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Motivation

HANK models have gained more popularity:

• social inequality matters for dynamics of the economy and monetary policy

• aggregate policies shape income and wealth distribution

Hard to solve because of their elevated complexity

• Heterogeneous agents facing idiosyncratic risks

• Aggregate uncertainty and nonlinearities

Difficult to estimate, usually requires repeated solving

This paper

• Develop estimation procedure based on neural networks

• Apply to nonlinear HANK model
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Key innovations

There are two key innovations tackling different estimation bottlenecks

1. Extended Neural Network more

Allows us to avoid repeated solving the model

2. Neural Network Particle Filter

Dramatically reduce the cost of likelihood evaluations
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Solution procedure using deep neural networks

• Euler residual minimization method (Maliar et al. 2021)

0. Instead of continuum of agents, there are L agents

1. Parameterize individual and aggregate policy functions with deep neural networks

ψi
t = ψI

NN (Sit,St|Θ) and ψA
t = ψA

NN (St|Θ)

Where St = {{Sit}Li=1,SAt } is a vector of state variables

Θ is the set of parameters of the model

2. Construct loss function - weighted mean of squared residuals

3. Train the deep neural networks using stochastic optimization

• Minimize the loss for points drawn from the state space

• Simulate model forward to generate a new draw from the state space

Training the neural networks repeatedly would take too long for estimation
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Avoid repeated solving - Extended Neural Network

• Treat model parameters as pseudo state variables

0. Instead of continuum of agents, there are L agents

1. Parameterize individual and aggregate policy functions with deep neural networks

ψi
t = ψI

NN (Sit,St, Θ̃|Θ̄) and ψA
t = ψA

NN (St, Θ̃|Θ̄)

Where St = {{Sit}Li=1,SAt } is a vector of state variables

Θ̄ is the set of calibrated and Θ̃ estimated parameters of the model

2. Construct loss function - weighted sum of mean of squared residuals

3. Train the deep neural networks using stochastic optimization

• Minimize the loss for points drawn from the state space

• Draw new values for parameters Θ̃ we are interested in estimating

• Simulate model forward to generate a new draw from the state space

More complex problem, but we only need to train the networks ONCE!
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Extended Neural Network - output from ONE neural network
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Black dashed line is what we get with standard solution methods.
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Costly likelihood evaluation - Neural Network Particle Filter

For nonlinear models we can obtain the likelihood using a particle filter

• Model needs to be evaluated for thousands of particles and multiple time periods

• Particle filter becomes the bottleneck for estimation
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Costly likelihood evaluation - Neural Network Particle Filter

Train a neural network to directly map from parameters to log-likelihood

1. Create a dataset of parameter values and log-likelihoods

2. Split the dataset into training and validation samples

3. Train a neural network on the training sample

• Use the validation sample to avoid overfitting

Benefits:

• Single likelihood evaluation can be done almost instantly

• Smooths out noise from the particle filter
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Neural Network Particle Filter - example with one parameter

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Relative risk aversion 

1150

1160

1170

1180

1190

1200

1210

1220

1230

Lo
g 

Lik
el

ih
oo

d

Log Likelihood log  conditioned on 

Neural Network
Particle Filter
True value

8



Proof of the pudding is in the eating

1. Compare the extended NN based solution to a benchmark

• Linearized three equation NK model with an analytical solution

Extended Neural Network matches the true solution

2. Compare the estimation results to a standard method

• Simple nonlinear RANK model with a ZLB

Estimation results are very similar

3. Estimating a nonlinear HANK model

• Using simulated data from the model results

• Using aggregate time-series for the US from 1990 to 2019

Scales to larger models

9



Linearized NK model

• Small linearized three equation NK model with a TFP shock

X̂t = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂F

t

)
(IS)

Π̂t = κX̂t + βEtΠ̂t+1 (NKPC)

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAϵ

A
t

Where X̂: output gap, Π̂: inflation, RF : risk free rate, ϵA: TFP shock

• Analytical solution:

X̂t =
1− βρA

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂F

t ,

Π̂t =
κ

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂F

t .
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Solving the linearized NK model with an Extended Neural Network

1. Parametrize the policy function with a deep neural network:
(
X̂t

Π̂t

)
= ψ( R̂F

t︸︷︷︸
St

, β, σ, η, ϕ, θΠ, θY , ρA, σA︸ ︷︷ ︸
Θ̃

) ≈ ψNN

(
R̂F

t , β, σ, η, ϕ, θΠ, θY , ρA, σA

)

2. Construct the loss function:

ERRIS = X̂ −
(
EtX̂t+1 − σ−1

(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂F

t

))

ERRNKPC = Π̂t −
(
κX̂t + βEtΠ̂t+1

)

L = w1
1

B

B∑

I=1

(ERRi
IS)

2 + w2
1

B

B∑

i=1

(ERRi
NKPC)

2 , where B is the batch size

3. Train the deep neural networks using stochastic optimization ...
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Solving the linearized NK model with an Extended Neural Network

3. Train the deep neural networks using stochastic optimization
• Batch size of 1000 (parallel worlds) for 500 000 iterations

At each iteration:
1. Draw parameters from a bounded parameter space:

Parameters LB UB Parameters LB UB
� Discount factor 0.95 0.99 ✓⇧ Mon.pol. inflation response 1.25 2.5
� Relative risk aversion 1 3 ✓Y Mon.pol. output response 0.0 0.5
⌘ Inverse Frisch elasticity 1 4 ⇢A Persistence TFP shock 0.8 0.95
' Price duration 0.5 0.9 �A Std. dev. TFP shock 0.02 0.1

Table 1: Model parameters values – first proof of concept. The table shows the parameters
of the three-equation New Keynesian model. The lower bound (LB) and upper bound
(UB) show how we truncate the parameter space when training the NN to approximate
the model solution.

The batch size is set to 1, 000. We conduct five optimization steps to approximate the

policy functions. The convergence of the NN is shown in Figure 2, which underscores

a considerable degree of accuracy in approximating the two policy functions, with the

mean squared residual error averaged across the two loss components reaching values

around 10�10.

In Figure 3, we show the extended policy function of the output gap as the struc-

tural parameters of the model vary. The extended policy function is evaluated at a

negative one standard deviation shock, and the unvaried parameters are fixed at the

middle value of their bounds, shown in Table 1. The comparison with the analytical

solution demonstrates that our NN is able to replicate the true solution extremely

well as the lines almost perfectly coincide. It is also noteworthy that NNs have the

ability to approximate the nonlinearities in the policy function well.Identical conclu-

sions on the accuracy of the method can be drawn from a similar graph showing the

policy function of inflation (Appendix B).

3.1.2 Likelihood approximation and estimation

As a next step, we estimate the likelihood of this model with our NN approach.

We simulate inflation and the output gap from the linearized RANK model for 100

periods and use these simulated series as data. In the simulation, the parameters are

terminating at a rate of 1e � 6.

17

2. Draw points from the state space by simulating the model:

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAϵ

A
t

3. Compute the loss L
4. Optimizer step (ADAM) to adjust the weights of the NN to minimize L
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Extended Neural Network: Inflation over the parameter space

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990
Discount factor 

0.0020

0.0025

0.0030

0.0035

0.0040

PF t conditioned on  

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Relative risk aversion 

0.0020

0.0025

0.0030

0.0035

0.0040

PF t conditioned on  

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Inverse Frisch elasticity 

0.0020

0.0025

0.0030

0.0035

0.0040

PF t conditioned on  

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Price duration 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

PF t conditioned on  

Neural network
Analytical solution

13



Extended Neural Network: Inflation over the parameter space
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Compare the estimation results to a standard method

• Simple RANK model

• Only a preference shock

• Zero lower bound

• Interesting laboratory:

1. Simple enough to solve and estimate with standard methods
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Estimation comparison

• Use the model to create time series for: output growth, inflation, interest rate

• Recover 5 parameter values using:

1. Neural networks based approach (extended NN, NN PF, RWMH)

2. Standard approach (time iteration, regular particle filter, RWMH)

True parameters for the data-generating process
Parameters Value Parameters Value
� Discount factor 0.9975 ✓⇧ Mon. pol. inflation response 2
� Relative risk aversion 1 ✓Y Mon. pol. output response 0.25
⌘ Inverse Frisch elasticity 1 4 log(⇧) Inflation target (annualized) 2
✏ Price elasticity demand 11 Y Output target 1
� Disutility labor 0.91 ⇢⇣ Persistence preference shock 0.7
' Rotemberg pricing 1000 100�⇣ Std. dev. preference shock 2

Estimation
Par. Prior NN Alternative Approach

Type Mean Std
Lower Upper Posterior Posterior
Bound Bound Median 5% 95% Median 5% 95%

✓⇧ Trc.N 2.0 0.1 1.5 2.5 2.04 1.92 2.15 2.06 1.93 2.20
✓Y Trc.N 0.25 0.05 0.05 0.5 0.250 0.240 0.260 0.248 0.237 0.260
' Trc.N 1000 50 700 1300 985 921 1047 970 909 1033
⇢⇣ Trc.N 0.7 0.05 0.5 0.9 0.69 0.671 0.707 0.688 0.670 0.707
�⇣ Trc.N 0.02 0.0025 0.01 0.025 0.020 0.019 0.021 0.020 0.019 0.021

Table 5: Parameters of the nonlinear RANK model. The upper panel shows the calibrated
parameters for the nonlinear RANK model. The lower panel shows the true values used
for simulating the model, the prior distributions as well as the posterior distributions.
The posterior is displayed for the NN-based estimation and an alternative (non-NN)
state-of-the-art approach. Trc.N stands for a truncated normal distribution.

are in percent. The measurement equation is given as:

2
6664

Output Growth

Inflation

Interest Rate

3
7775 =

2
6664

400
⇣

Yt

Yt�1
� 1
⌘

400 (⇧t � 1)

400 (Rt � 1)

3
7775+ ut, (43)

where the measurement error follows a Gaussian distribution ut ⇠ N (0,⌃u). The

variance of the measurement error for each time series is a fraction mE of its own

variance. We set mE = 0.1.

Training of the extended policy functions. The computationally most chal-

lenging step in the estimation is the first one, where we solve for the policy functions.

The NN approximates the labor and consumption policy and is conditioned on the

53
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Estimation comparison: posterior
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Estimating a nonlinear HANK model

• Households face idiosyncratic income risk sit and a borrowing limit B

E0

∑∞
t=0

βt exp(ζDt )

[(
1

1− σ

)(
Ct

Zt

)1−σ

− χ

(
1

1 + η

)
(H i

t)
1+η

]

s.t. Ci
t +Bi

t = τt

(
Wt

Zt
exp(sit)H

i
t

)1−γτ

+
Rt−1

Πt
Bi

t−1 +Divt exp(s
i
t)

s.t. Bi
t ≥ B

where idiosyncratic risk follows an AR(1) process: sit = ρss
i
t−1 + σsϵ

i
t

• Aggregate shocks: preference ζD, growth rate gt and monetary policy mpt

• Monopolistically competitive firms and Rotemberg pricing

• Monetary policy is constrained by the zero lower bound

Rt = max

[
1, R

(
Πt

Π

)θΠ
(
Yt
ZtY

)θY

exp(mpt)

]
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Estimating a nonlinear HANK model - Extended NN part

We are interested in finding the policy functions over parameter ranges

0. Instead of continuum of agents there are L = 100 agents

1. Policy functions parameterized by deep neural networks

• Aggregate: inflation and wage

• Individual: labor choice

• 213 state variables

• 200 individual, 3 aggregate and 10 pseudo (parameters) states

2. Loss function is a weighted sum of squared residuals of:

• Fisher-Burmeister eq. (Euler residual and individual borrowing limit)

• NKPC

• Bond market clearing

• Product market clearing

3. Train the deep neural networks ...
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Estimating a nonlinear HANK model - Extended NN part

3. Train the deep neural networks ... in two steps

a. Deterministic steady state (DSS) - model without agg. shocks

• We need nominal rate and output for the Taylor rule

• DSS network: RDSS and YDSS

• Individual network: labor choice

• Slightly different loss function (no NKPC error, Y − YDSS)

b. Full nonlinear HANK - agg. and idiosyncratic shocks

• Start from individual network from the previous step (transfer learning)

• Use DSS network (stays fixed)

• Aggregate network: inflation and wage

• Curriculum learning (HANK → HANK with ZLB ...)
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Estimating a nonlinear HANK model - NN particle filter and RWMH

1. Neural network particle filter

• Create a dataset:

• Draw parameters (Sobol sequence)

• Use particle filter to calculate model log-likelihood

• Train a NN that maps from parameters to model log-likelihoods

2. Random Walk Metropolis-Hastings Algorithm

• Computational costs are frontloaded

• Very fast to generate a large number of draws
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Estimation with US data

US time-series data from 1990:Q1 to 2019:Q4

• GDP growth rate per capita

• GDP deflator

• Shadow interest rate

Measurement equation:



Output Growth

Inflation

Interest Rate


 =



400

(
Yt

Yt−1/gt
− 1
)

400 (Πt − 1)

400 (Rt − 1)


+ ut,

Measurement error ut ∼ N (0,Σu) is 5% of the variance of each observable
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Estimation with US data Moments

Estimation

Par. Prior NN

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters a↵ecting the DSS

100�s Trc.N 5.00 1.000 2.50 10.0 7.04 5.67 8.10
B Trc.N �0.50 0.010 �0.65 �0.35 �0.50 �0.54 �0.46

Other parameters

' Trc.N 100 5.000 70 120 101 94 107
✓⇧ Trc.N 2.25 0.125 1.75 2.75 2.43 2.20 2.67
✓Y Trc.N 1.00 0.025 0.75 1.25 0.96 0.92 1.00
⇢z Trc.N 0.40 0.025 0.2 0.6 0.43 0.39 0.47
⇢m Trc.N 0.90 0.005 0.85 0.95 0.91 0.90 0.91

100�⇣ Trc.N 1.50 0.100 1.00 2.00 1.22 1.10 1.33
100�z Trc.N 0.40 0.100 0.30 0.60 0.47 0.43 0.53
100�m Trc.N 0.06 0.010 0.05 0.20 0.15 0.14 0.16

Table 3: Prior and Posterior distributions. Prior and posterior moments for the estimation
with real data. The prior type indicates the prior density function. Trc.N stands for
truncated normal distribution.

we will show, in our model, an increase in the level of idiosyncratic income risk (�s)

heightens the ZLB risk and frequency, leading to greater volatility in output and

inflation, which are observed in estimation.

4.3 How good is what we got?

The empirical fit of the model is quite promising given the stylized nature of the

HANK model we have estimated. In Table 4, we compare the second moment of the

observables in the estimated HANK model and in the data. The standard deviation

of output growth, inflation, and the nominal interest rate in the model are quite close

to the ones measured in the data.

30
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Interaction between heterogeneity and nonlinearities
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Idiosyncratic risk, ZLB frequency, and aggregate output volatility
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Conclusion

Novel estimation procedure based on neural networks

1. Extended Neural Network - avoid repeated solving

2. Neural Network Particle Filter - fast likelihood evaluations

• Estimation of a HANK model with individual and aggregate nonlinearities

• Two proof-of-concept models to demonstrate accuracy

• Opens up new exciting avenues for future research questions

• Work with more realistic high-dimensional models

• A framework to think about monetary policy strategy and inequality
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Code for the analytical example!

https://github.com/tseep/estimating-hank-nn

https://github.com/tseep/estimating-hank-nn


Appendices



Neural Network

Hidden Layer

Output Layer

Hidden Layer

Input Layer
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Neural Network

• Single neuron i in layer l with width Hl and activation function σ:

xli = σ


∑

j

W l
ijx

l−1
j + bli


 , 1 ≤ i ≤ Hl, 1 ≤ j ≤ Hl−1

• Single layer:

xl = σ
(
Al(xl−1)

)
, Al

(
xl−1

)
= Wlxl−1 + bl

• The entire network with L hidden layers:

ψ(x) =
(
AL+1 ◦ σ ◦ AL ◦ σ ◦ AL−1 ◦ ... ◦ σ ◦ A1

)
(x)

• Weights and biases of the network:

θ = {Wl, bl}L+1
l=1
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Extended Neural Network

Output Layer

Input Layer

Hidden Layer Hidden Layer
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Training a Neural Network

• Suppose we want to approximate f : x 7→ y using our neural network ψ(x; θ)

• We have a dataset of pairwise samples S = {(xi,yi) : 1 ≤ i ≤ N}
• Training is adjusting θ so that ψ(x, θ) starts approximating f :

θ∗ = argmin
θ

L(θ), where L(θ) = 1

N

N∑

i=1

(yi − ψ(x; θ))

• Usually done using (some variation of) gradient decent algorithm:

θk+1 = θk − η
∂L
∂θ

(θk)

• Where η is the learning rate

• The gradients are efficiently calculated using backpropagation algorithm
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Extended (policy function approximated by) Neural Networks

• We usually solve models and find policies as a function of the state

ψt = ψ(St|Θ)

• We could extend the states by treat parameters Θ as additional input

ψt = ψ(St,Θ)

• With ψ(St,Θ) we can quickly get the policy for different parameter values
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Extended (policy function approximated by) Neural Networks back

• Infeasible using standard methods

• Severe curse-of-dimensionality NS ×NΘ

• Standard methods grow exponentially with dimensions

• Neural networks can tame the curse-of-dimensionality

• Number of neurons required grows linearly with dimensions

• Scale to models with large number of state variables

• Can resolve local features accurately (kinks)

• Can capture irregularly shaped domain
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Estimating HANK with simulated data back

Estimation experiment:

• Use the calibrated model to create time series for:

• Output growth

• Inflation

• Interest rate

• Recover 10 parameters

1. Generate a dataset of parameter values and corresponding log-likelihoods

2. Train the Neural Network Particle Filter

3. Run the Random Walk Metropolis Hastings algorithm
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Estimation with simulated data Calibrated parameters

Calibrated Parameter Values

Parameters Value Target/Source

� Discount factor 0.9975 4% nominal interest rate
⌘ Inverse Frisch elasticity 0.72 Chetty et al. (2011)
� Relative risk aversion 1 Log utility
ā Average growth rate 1.0033 Real GDP growth = 0.33% (quarterly)
� Disutility labor 0.74 Labor supply is approximately 1
�⌧ Tax progressivity 0.18 Heathcote et al. (2017)
D DSS government debt 1.0 Wealth share=25% GDP (Kaplan et al., 2018)
⇧ Inflation target 1.00625 Inflation target = 2.5% (annualized)
⇢s Persistence labor prod. 0.9 Share of borrowers = 34%
⇢⇣ Persistence pref. shock 0.7 Frequency of ZLB = 15%

Estimation
Par. True Prior NN

Value Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters a↵ecting the DSS

100�s 5.00 Trc.N 5.00 1.000 2.50 10.0 4.28 3.17 5.31
B �0.50 Trc.N �0.50 0.010 �0.65 �0.35 �0.50 �0.54 �0.46

Other parameters

' 100 Trc.N 100 5.000 70 120 100 92 108
✓⇧ 2.25 Trc.N 2.25 0.125 1.75 2.75 2.40 2.25 2.55
✓Y 1.00 Trc.N 1.00 0.025 0.75 1.25 1.01 0.97 1.05
⇢z 0.40 Trc.N 0.40 0.025 0.20 0.60 0.40 0.37 0.45
⇢m 0.90 Trc.N 0.90 0.005 0.85 0.95 0.90 0.89 0.91

100�⇣ 1.50 Trc.N 1.50 0.100 1.00 2.00 1.45 1.34 1.57
100�z 0.40 Trc.N 0.40 0.100 0.30 0.60 0.36 0.32 0.40
100�m 0.06 Trc.N 0.06 0.010 0.05 0.20 0.06 0.05 0.07

Table 2: Parameters of the nonlinear HANK model. The upper panel shows the calibrated
parameters for the nonlinear HANK model. The lower panel shows the true values used
for simulating the model in Section 3.3 as well as the prior and the posterior distributions.
Trc.N stands for truncated normal distribution.

The posterior moments of the estimated parameters are shown in the lower panel

of Table 2. The estimation includes 10 structural parameters. The posterior median

25
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Calibrated parameters of the nonlinear HANK back

Calibrated Parameter Values

Parameters Value Target/Source

� Discount factor 0.9975 4% nominal interest rate
⌘ Inverse Frisch elasticity 0.72 Chetty et al. (2011)
� Relative risk aversion 1 Log utility
ā Average growth rate 1.0033 Real GDP growth = 0.33% (quarterly)
� Disutility labor 0.74 Labor supply is approximately 1
�⌧ Tax progressivity 0.18 Heathcote et al. (2017)
D DSS government debt 1.0 Wealth share=25% GDP (Kaplan et al., 2018)
⇧ Inflation target 1.00625 Inflation target = 2.5% (annualized)
⇢s Persistence labor prod. 0.9 Share of borrowers = 34%
⇢⇣ Persistence pref. shock 0.7 Frequency of ZLB = 15%

Estimation
Par. True Prior NN

Value Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters a↵ecting the DSS

100�s 5.00 Trc.N 5.00 1.000 2.50 10.0 4.28 3.17 5.31
B �0.50 Trc.N �0.50 0.010 �0.65 �0.35 �0.50 �0.54 �0.46

Other parameters

' 100 Trc.N 100 5.000 70 120 100 92 108
✓⇧ 2.25 Trc.N 2.25 0.125 1.75 2.75 2.40 2.25 2.55
✓Y 1.00 Trc.N 1.00 0.025 0.75 1.25 1.01 0.97 1.05
⇢z 0.40 Trc.N 0.40 0.025 0.20 0.60 0.40 0.37 0.45
⇢m 0.90 Trc.N 0.90 0.005 0.85 0.95 0.90 0.89 0.91

100�⇣ 1.50 Trc.N 1.50 0.100 1.00 2.00 1.45 1.34 1.57
100�z 0.40 Trc.N 0.40 0.100 0.30 0.60 0.36 0.32 0.40
100�m 0.06 Trc.N 0.06 0.010 0.05 0.20 0.06 0.05 0.07

Table 2: Parameters of the nonlinear HANK model. The upper panel shows the calibrated
parameters for the nonlinear HANK model. The lower panel shows the true values used
for simulating the model in Section 3.3 as well as the prior and the posterior distributions.
Trc.N stands for truncated normal distribution.

The posterior moments of the estimated parameters are shown in the lower panel

of Table 2. The estimation includes 10 structural parameters. The posterior median
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How good is what we got? back

Standard deviations Autocorrelations Avg. Gini coef.

Model Data Model Data Model Data

GDP 0.6947 0.5831 GDP 0.1355 0.4050
Inflation 1.1511 0.9045 Inflation 0.8146 0.5456 Wealth 0.8793 0.8410
FFR 2.561 2.7537 FFR 0.7219 0.9707

Table 4: Moments comparison: model vs. data. The table reports the standard devia-
tions (left panel) and the autocorrelation coe�cients (middle panel) in the model and
in the U.S. data for the three observable variables: real GDP growth (GDP), GDP de-
flator growth (Inflation), and the federal funds rate (FFR). The right panel of the table
shows the average Gini coe�cient in the model and in the U.S. data (World Inequality
Database). The model-implied moments are obtained by simulating the estimated model
for 1,000,000 periods and with parameters set at the posterior median. The empirical
moments are computed over the sample period used in estimation (1990:Q1-2019:Q4).

The match is somewhat unsatisfactory, when it comes to the serial correlation

of the three observables. This finding underscores the need for extensions of the

HANK model aimed at enhancing its endogenous persistence mechanism. Introducing

additional nominal and real frictions could be an e↵ective strategy for improving the

empirical fit of the stylized nonlinear HANK model we have estimated.

Acharya et al. (2023) estimate a HANK model using likelihood methods and

find that its empirical performance is inferior to that of a state-of-the-art RANK

model. One potential reason for this subpar performance is the challenge of accurately

estimating certain parameters of the HANK model, particularly those a↵ecting its

DSS, due to the high computational cost of recomputing it. Our NN estimation

method addresses this challenge by e�ciently solving the steady state equilibrium of

HANK models, allowing the estimation of these parameters. In contrast to Acharya

et al. (2023), we estimate the fully nonlinear version of a HANK model, including the

ZLB constraint.

In Table 4, we also present the average Gini index of the wealth distribution in

our model, which we estimated without observing any cross-sectional data, alongside

the corresponding index measured by the World Inequality Database for the US over

the same sample period of our estimation. The two coe�cients are quite close.
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