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1 Introduction

Over the past three decades, a significant advancement in macroeconomic research

has been the integration of heterogeneity into dynamic general equilibrium models.

These models enable the study of distributional issues, economic fluctuations, and

stabilization policies within a single micro-founded framework. The complexity of

these models often necessitates introducing tractability assumptions that largely pre-

clude scholars from considering nonlinear aggregate dynamics and their interactions

with heterogeneity. Yet, accounting for these nonlinear dynamics is essential to un-

derstand recent macroeconomic events, including recurring and prolonged periods at

the zero lower bound (ZLB), deep recessions, and the recent rise in inflation. In this

paper, we leverage recent advances in machine learning to develop a neural network

(NN)-based method for solving and estimating models with heterogeneous agents,

fully incorporating nonlinear aggregate dynamics. We apply our method to perform

likelihood estimation of a nonlinear Heterogeneous Agent New Keynesian (HANK)

model using US data.

Estimating structural models entails searching for parameter values that globally

maximize an objective function, which could be a likelihood function, a posterior

distribution, or the distance between a set of empirical moments or impulse response

functions and their model counterparts. This search involves evaluating the objective

function at potentially numerous parameter values. For each parameter value, two

steps are typically taken. First, the model’s policy functions are characterized (so-

lution step). Second, once the policy functions are properly approximated for that

parameter value, the objective function is evaluated (evaluation step).

When estimating the parameters of an economic model, these two steps are re-

peated multiple times to find the global maximum of the objective function. This

repetition is not problematic if the model can be solved within a fraction of a second,

using a routine that can be easily automated. For instance, this is the case of lin-

earized representative-agent models. However, repeatedly solving a highly complex
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nonlinear model, such as nonlinear HANK models with aggregate uncertainty, is un-

manageable. Additionally, in the context of HANK models, the solution step may

involve computing the steady-state equilibrium afresh, which is a quite computation-

ally intense task to perform.

To overcome these computational hurdles, we approximate the model’s policy

functions without conditioning on specific parameter values. By treating the param-

eters as inputs, or pseudo-state variables, of the policy functions, we only need to

solve the model once, and only before launching the estimation. While this approach

expands the dimensionality of the model’s policy functions to approximate, NNs are

highly effective in managing high-dimensional problems (scalability), such that the

increase in computational burden remains manageable.1 Once the model’s policy

functions are approximated over the parameter space, the model’s solution can be

retrieved in a fraction of a second for any combination of parameters.

An additional computational challenge arises when performing likelihood estima-

tion of nonlinear models. Evaluating the likelihood of these models requires the use

of filters based on Monte Carlo (MC) methods, such as the particle filter. These

filters are computationally more expensive and less accurate compared to those used

for evaluating the likelihood of linearized Dynamic Stochastic General Equilibrium

(DSGE) models. Therefore, minimizing the frequency of likelihood evaluations and

improving the accuracy of filter-based assessments are critical objectives.

To achieve these objectives, we train another NN –the neural network particle filter

– to obtain an approximation of the likelihood prior to estimation. This additional

NN is trained through three steps. First, we obtain several thousand quasi-random

parameter draws (training sample). Second, we evaluate the likelihood at each of

these draws using a standard particle filter. To perform this step we do not need to

solve the model multiple times as we can utilize the NNs trained to provide a fast

1NNs are the fundamental building blocks of deep learning, which is a subset of machine learn-
ing methods. They provide a flexible functional form that can efficiently approximate arbitrarily
complex, nonlinear functions, potentially with a large set of inputs.
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and reliable approximation of the model solution at each draw of the training sample.

Third, the NN is trained to predict the likelihood evaluated at these draws.2 The

NN particle filter delivers an accurate and smooth approximation of the likelihood

function by effectively ironing out the inaccuracies of the particle filter. With the

approximated likelihood function at hand, there is no need to repeatedly run a time-

consuming MC filter to maximize this function. Instead, the function can be evaluated

almost instantaneously at any parameter value using the NN approximation.

Importantly, our methodology facilitates the estimation of parameters influencing

the model’s steady-state equilibrium. By treating model parameters as pseudo-state

variables, the steady-state equilibrium needs to be solved only once with a specifically

trained NN. This feature alleviates a significant bottleneck, as solving the steady state

of these models at each solution step is computationally intensive. Furthermore, this

property of our method presents a crucial advantage, as it enables the estimation of

a greater number of parameters, expanding the scope of the estimation analysis.

We provide three proofs of concept to validate our methodology. First, we show

that our approach replicates the policy functions of a small-scale, linearized Repre-

sentative Agent New Keynesian (RANK) model, which can be solved analytically.

Second, we compare our method for likelihood estimation to an alternative state-

of-the-art method for nonlinear models. Since this alternative method cannot treat

parameters as pseudo state variables, its scope of application is considerably limited.

In light of these limitations, we are compelled to consider a stylized representative-

agent model featuring only one source of aggregate nonlinearity – the ZLB constraint.

We show that the two methods deliver remarkably similar estimation outputs, sug-

gesting that our method can perform equally well as a state-of-the-art global method,

but with the advantage of being applicable to a much broader set of models. Third,

we simulate a nonlinear HANK model and use the simulated data to estimate its pa-

rameters, including those affecting the steady-state equilibrium outcomes. We show

2We minimize the mean squared errors between the likelihood vlaues approximated by the NN
and the likelihood values computed via the standard particle filter in the second step.
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that our method successfully recovers the true parameter values of the model.

We then estimate a HANK model using US data. This model integrates both

idiosyncratic and aggregate shocks, along with nonlinearities such as individual bor-

rowing limits and a ZLB constraint. Despite its stylized nature, the estimated model

matches a set of key moments of the data fairly closely. Idiosyncratic income risk is

found to explain a large share of volatility in the macro data. This finding is primarily

due to the presence of the ZLB constraint. As idiosyncratic risk rises, agents save

more and the interest rate falls, increasing the risk of encountering the ZLB. The

heightened ZLB risk leads to a higher volatility in inflation and output, as the central

bank’s capacity to stabilize the economy is diminished by the binding constraint.

Literature. Since Krusell and Smith (1998) wrote their seminal paper, the litera-

ture has introduced a variety of methods to solve models with heterogeneous agents

(e.g. Algan et al., 2008; Reiter, 2009; Den Haan et al., 2010 Ahn et al., 2018; Bop-

part et al., 2018; Bayer et al., 2019; Auclert et al., 2021; and Winberry, 2021). These

methods rely on linear approximations of the aggregate dynamics of the model and

are therefore not suitable for studying the interactions between nonlinearities and

heterogeneity in general equilibrium. Recently, the literature has applied these lin-

earized techniques to estimate HANK models using likelihood methods (e.g. Challe

et al., 2017; Bayer et al., 2024a; Auclert et al., 2020; Lee, 2020; Auclert et al., 2021;

Bilbiie et al., 2023; and Acharya et al., 2023). Unlike in our paper, estimation is very

often confined to parameters that do not affect the model’s steady state and aggre-

gate nonlinearities (e.g. the ZLB constraint) are not taken into account. Bhandari

et al. (2023) and Bayer et al. (2024b) pioneered methods to solve heterogeneous agent

models by approximating their aggregate dynamics to higher orders. In this paper,

we introduce NN-based methods to solve these models using global methods. We also

show how our methods can be used to solve models with heterogeneous agents.

Our paper is connected to the literature that develops NNs to solve complex
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dynamic macroeconomic models globally such as Fernández-Villaverde et al. (2020),

Ebrahimi Kahou et al. (2021), Maliar et al. (2021), Azinovic et al. (2022), Duarte

et al. (2024), and Valaitis and Villa (2024). Our contribution to this literature is to

show how to use NNs to not only solve but also to estimate nonlinear heterogeneous

agent models. Estimation – including the simulated method of moments, impulse-

response-functions matching, maximum likelihood, and Bayesian estimation – adds

an additional important layer of complication in that it requires solving the model at

hundreds of thousands of different points in the parameter space.

Fernández-Villaverde et al. (2023a) estimate the critical parameter of a model

with a financial sector and heterogeneous households with NNs using the time-series

of GDP growth. We can expand the scale of the estimation exercise and estimate

several parameters using multiple observable variables because (i) we combine the

scalability of NNs with the intuition of treating the model parameters as pseudo-state

variables when solving the model and (ii) we use NNs to facilitate the evaluation of the

likelihood via the filter - which we call NN particle filter. Furthermore, differently from

Fernández-Villaverde et al. (2023a), we estimate a HANK model. To our knowledge,

we are the first to estimate a HANK model in its nonlinear specification.

HANK models are attracting growing attention of scholars (e.g. Oh and Reis,

2012; McKay and Reis, 2016; McKay et al., 2016; Den Haan et al., 2017; Guerrieri

and Lorenzoni, 2017; Ravn and Sterk, 2017; Kaplan and Violante, 2018; Kaplan et al.,

2018; Auclert, 2019; Bilbiie, 2020 and Ravn and Sterk, 2020; Gornemann et al., 2021;

Luetticke, 2021; and Auclert et al., 2023).3 Methods to solve these models globally

by relying on NNs have been recently developed (e.g. Maliar and Maliar, 2020;

Gorodnichenko et al., 2021; Fernández-Villaverde et al., 2023b; and Han et al., 2021)

or by introducing alternative approaches unrelated to machine learning (e.g. Schaab,

2020; and Lin and Peruffo, 2024). Compared to this strand of literature, we show how

to leverage the scalability of NNs to enable estimation of nonlinear HANK models.

3Scholars have also explored general equilibrium models where heterogeneity characterizes the
firm side – e.g. Ottonello and Winberry (2020).
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The paper is organized as follows. In Section 2, we explain the architecture of our

NN-based methodology to solve and estimate nonlinear heterogeneous agent models.

In Section 3, we provide three proofs of concept of our method. We solve and estimate

a nonlinear HANK model using US data in Section 4. In Section 5, we conclude.

2 A neural-network framework for estimation

In this section, we describe how to leverage the properties of NNs to enable the

estimation of nonlinear models with heterogeneous agents. We first provide a primer

on NNs. Second, we explain how NNs can be used to efficiently characterize the

policy functions of a model treating the parameters as pseudo-state variables. Third,

we show how another NN can be trained to characterize the deterministic steady-

state equilibrium of the model, when this equilibrium influences its policy functions.

Fourth, we explain how to train the NN particle filter.

2.1 Neural networks

NNs are function approximators well-suited for learning highly dimensional nonlinear

functions.4 Consider a function Y = ψ(X), mapping a vector of inputs X into a

vector of outputs Y. The function can be approximated by a NN denoted by:

Y = ψNN(X|W ), (1)

where W are the weights defining the NN. As illustrated in Figure 1, the NN con-

sists of several layers, which can be divided into the input layer, hidden layer(s) in

between, and the output layer. Each hidden layer consists of several neurons, which

are represented as circles in the figure.

4NNs are the fundamental building blocks of deep learning – a class of machine learning tech-
niques. The universal approximation theorem states that a feedforward network with at least one
hidden layer can approximate any continuous function in a finite-dimensional space with any desired
non-zero error given a sufficient width (Hornik et al., 1989.).
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Hidden Layer

Output Layer

Hidden Layer

Input Layer

Figure 1: Illustration of a neural network. An illustrative example of a NN with three inputs
(blue circles), two hidden layers (the two rows of red circles) with six neurons (the red
circles) each, and four outputs (the green circles).

A single neuron is a composition of an affine function with inputs x1, x2, . . . xM ,

weights w1, w2, . . . , wM , and bias w0 and a nonlinear activation function g(·) that

returns a single output ỹ:5

ỹ = g(w0 +
M∑
i=1

wixi). (2)

The structure and weights characterize a NN. For example, the NN illustrated in

Figure 1 has four layers containing in total 94 weights (including biases).6 In matrix

notation, we can write a single layer h of the NN as:

y = g
(
Ah(x)

)
, where Ah(x) ≡ W hx, (3)

where the inputs, outputs, and weights are now written as vectors.7 As implied

by equation (3) and Figure 1, NNs are natural to vectorize, making them efficient

5The nonlinear activation function g(·) makes it possible for the NN to approximate nonlinear
functions. Popular examples of activation functions are ReLU (rectified linear unit), CELU (contin-
uously differentiable exponential linear units), or Tanh (hyperbolic tangent).

6The first hidden layer has (3 + 1) × 6 = 24 weights (including biases); the second hidden layer
has (6 + 1) × 6 = 42; the output layer has (6 + 1) × 4 = 28. The first term in the brackets is the
weights plus the bias at each neuron, and the second term is the number of neurons in the layer.

7The entire NN with H hidden layers can be written as a composition of functions ψNN (X|W ) =(
AH+1 ◦ g ◦ AH ◦ g ◦ AH−1 ◦ · · · ◦ g ◦ A1

)
(X) where ◦ denotes a function composition.
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to compute, especially on graphics processing units (GPUs) that excel at matrix

multiplications and element-wise operations.8

The weights W are optimized (trained) to minimize a loss function; e.g. the mean

squared error between observed and predicted values of the function to approximate.

The optimization of the weights of the NNs relies on the back-propagation algorithm,

which allows computing all partial derivatives of the loss with respect to the weights of

the NN in approximately the same number of operations, and similar computational

cost, as computing the loss itself. The partial derivatives inform the direction in which

an optimization algorithm should adjust the weights of the NN to minimize the loss.

In particular, we use a stochastic gradient descent based optimization algorithm called

AdamW, which is currently one of the most widely used optimizers for training NNs.

The accuracy of the NN approximation and the speed of the training process can be

improved by adjusting the learning rate during the training, which is done using a

learning rate scheduler. A common choice is to gradually decrease the learning rate

as the training progresses, following, for example, a linear or exponential schedule.

2.2 Neural-network solution method

We consider a large class of dynamic general equilibrium models, whose dynamics are

governed by the following transition equations or laws of motion:

St = f (St−1, νt|Θ), (4)

where St is a finite vector of S state variables of the model. The economy is subject

to U exogenous shocks νt that affect the response of the state variables. The model’s

structural parameters are denoted by Θ. The function f(·) is possibly nonlinear and

typically does not have a closed-form analytical characterization.

Solving the model amounts to finding a set of O policy functions that map the

state variables, St to a set of control variables, ψt for given values of the model

8To further improve efficiency, the calculations are typically done for batches of inputs.
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parameters, Θ: ψt = ψ(St|Θ). These policy functions satisfy a set of K equilibrium

conditions derived from the model equations:9

F (ψ(St|Θ)) = 0. (5)

With the policy functions ψ(·) at hand, the transition equations (4) can be obtained.

Extended policy functions. A critical bottleneck for estimation is the need to

solve policy functions for a potentially very large and a-priori unknown number of

times at different parameter values. In the context of the models studied in this paper,

this task is often unmanageable. To address this issue, we treat the parameters to

estimate as pseudo-state variables when approximating the policy functions.10

We define the extended policy functions as

ψt = ψ
(
St, Θ̃|Θ̄

)
, (6)

where the vector of parameters Θ is split into Θ̃ – the set of parameters to estimate

– and Θ̄ – the set of parameters that are fixed in estimation. The characterization of

the extended policy functions leads to the extended transition equations:

St = f
(
St−1, νt, Θ̃|Θ̄

)
. (7)

Agents’ heterogeneity. In the literature studying heterogeneous agent models,

it is commonly assumed that there exists a continuum of agents. However, this

assumption makes the state vector infinite dimensional, which of course presents

insurmountable computational challenges. Therefore, when approximating the policy

functions of these models, we discretize the model population by keeping track of a

finite number L of agents.11

9Examples of these conditions may be the Euler equation or the resource constraint.
10Examples of computational papers that use pseudo-state variables in combination with machine

learning are Norets (2012), Scheidegger and Bilionis (2019), and Duarte and Fonseca (2024).
11Our methods can be applied to solve models featuring a finite number of industries or countries.
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The transition equations of heterogeneous agent models can be recast in exactly

the same form as in equation (4), where the state vector St comprises both the set

of aggregate state variables, SA
t , and the set of individual state variables for each

agent, {Si
t}

L
i=1, and the vector of shocks, νt, includes both aggregate shocks, νAt , and

idiosyncratic shock for each agent, {νit}
L
i=1.

In contrast to the previous case with no heterogeneity, we now have two sets of

policy functions to approximate: the aggregate policy functions, denoted as ψA(·),

and the individual policy function, represented by ψI(·).12 Following the approach

introduced earlier, these functions are expressed in their extended form by treating

the parameters to estimate, Θ̃, as pseudo-state variables.

ψA
t = ψA(St, Θ̃|Θ̄) and ψi

t = ψI(Si
t, St, Θ̃, |Θ̄), (8)

where Si
t denotes the individual state variables. The number of individual and aggre-

gate state variables are Si and SA
t , respectively, so the total number of state variables

is S = Si×L+SA. The number of exogenous shocks and policy functions is similarly

defined as U = U i × L+ UA and O = Oi × L+OA, respectively.13

Neural networks and training. We set up two NNs, ψI
NN(·) and ψA

NN(·), to

approximate the individual and aggregate extended policy functions, ψI(·) and ψA(·),

defined in equation (8). We train these two NNs by choosing their weights, W , so as

to minimize the weighted squared residual error for the equilibrium conditions:

ΦL =
K∑
k=1

αk[Fk(ψNN(St, Θ̃|Θ̄))]2, (9)

12Note that the individual function is the same across agents, indicating that agents with the same
individual state variables Sit make the exactly same decisions, ψi

t.
13In this paper, we track all the states of the agents as in Maliar et al. (2021) for instance. An

alternative approach is to reduce the dimension of the individual states to track by exploiting the
symmetry of the agents following Ebrahimi Kahou et al. (2021). Our method can be combined with
either approach.
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where Fk(·) denotes the residual error associated with the k-th equilibrium condition

and αk is the weight of this condition.14 We include at least as many optimality

conditions as the number of policy functions, so that K ≥ Oi × L+OA.

To leverage the potential for parallelization provided by GPUs, the two NNs are

trained on a batch with size B. This step amounts to having B pseudo-randomly

drawn state vectors, St,b and parameters to estimate, Θ̃b. In each optimization step,

we minimize the loss functions ΦL averaged across batch size B:

Φ̄L =
1

B

B∑
b=1

K∑
k=1

αk

[
Fk(ψNN(St,b, Θ̃b|Θ̄))

]2
. (10)

This loss function is minimized by using a stochastic gradient descent method.

As standard, to evaluate the residual error for some of the equilibrium conditions,

Fk(ψ(·)), we are required to compute agents’ expectations. We do so by using Monte

Carlo (MC) integration. Specifically, we randomly draw next period’s shocks to ap-

proximate expectations.15 To increase precision, one can conduct several optimization

rounds with new sets of drawn shocks to evaluate expectations.

The training of the NNs to approximate the aggregate and idiosyncratic policy

functions concludes the solution of the model. Since the parameters to be estimated

are treated as pseudo-state variables of the approximated policy functions, the model

can be simulated and its transition equations obtained in just a fraction of a second,

as these tasks only require evaluating the previously trained NNs. This approach

eliminates the need to repeatedly solve the model, which is a critical bottleneck when

estimating models with a large set of state variables.

Stochastic solution domain and truncated parameter space. The grid points

for the state variables and parameter values at the beginning of each optimization step

are drawn randomly. We aim to train the algorithm only on the relevant domain of the

14The weights can vary so as to take into account that losses across different equations possibly
have different magnitudes.

15To reduce the variance of MC integration, we use the antithetic variate method in this paper.

11



state space. Following the approach of Maliar et al. (2021), we directly sample from

the model to approximate the ergodic distribution of the state variables, also known

as the stochastic solution domain. Specifically, we simulate each economy (batch)

forward using the NNs trained at the current optimization step. The endpoint of

the simulation provides an approximation of the ergodic distribution of the state

variables, which we use for the next optimization step.

We truncate the space from which we draw the model parameters to estimate

(the pseudo-state variables). By limiting the admissible set of parameter values, we

achieve a more accurate evaluation of the ergodic distribution of the state at each

optimization step. In the case of Bayesian estimation, truncating the parameter space

when approximating the model’s solution can be made consistent through the use of

truncated prior distributions.

Parameters affecting the deterministic steady state (DSS). Often, solving a

heterogeneous agent model requires knowing its DSS.16 Finding the DSS necessitates

solving a Bewley-Huggett-Aiyagari type economy over the parameter space, which

is a computationally intensive step. To address this, we train an auxiliary neural

network (NN) to approximate the DSS. This auxiliary NN is then used when training

the other two NNs (ψI
NN and ψA

NN) that approximate the aggregate and idiosyncratic

policy functions defined in equation (8).

2.3 The neural network particle filter

The likelihood function of DSGE models is typically evaluated in two steps. In the

solution step, the model’s policy functions must be characterized. The neural networks

(NNs), trained as described in the previous section, can be utilized to perform this

task quickly and at several points in the model’s parameter space. With the policy

16The DSS is typically defined as the model economy in the absence of aggregate shocks (e.g.,
Fernández-Villaverde et al., 2023b). For example, in the context of New Keynesian models, the
monetary policy rule is typically specified as a function of the model’s DSS interest rate and output.
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functions at hand, we can construct the transition equations (7) which, combined

with the measurement equations that map the observable variables to the appropriate

model concepts, form the state-space representation of the model. Since the likelihood

cannot be analytically characterized, it is typically evaluated by applying a filter to the

state-space representation in the evaluation step. Filters return the model’s one-step-

ahead predictive densities over the available sample period, pΘ̄

(
yt|yt−1, ..., y1, Θ̃

)
,

where yt denotes the vector of observable variables in period t. The product of the

model’s predictive densities in every period t ∈ 1, ..., T is the likelihood function:

LΘ̄

(
Y1:T |Θ̃

)
=

T∏
t=1

pΘ̄

(
yt|yt−1, ..., y1, Θ̃

)
. (11)

Thus, for a given data set of T periods, Y1:T , a filter can be thought as a mapping

from the set of model parameters, Θ̃, to the value of the likelihood function.17 We

train a new NN – the NN particle filter – to accurately approximate this mapping.

The likelihood function of nonlinear models requires MC filters for evaluation.18

Compared to filters used with linear models, MC filters are both more time-consuming

and less accurate. These challenges are particularly pronounced when estimating

models with a highly dimensional state space such as nonlinear heterogeneous agent

models. As we will show, our NN particle filter significantly mitigates these short-

comings of MC filters.

The NN particle filter is trained through the following three steps. First, we

obtain several thousands of quasi-random draws from the parameter space. Second,

we execute the (standard) particle filter to derive the likelihood value at each of these

draws. It is noteworthy that for this step, we employ the trained NNs to approximate

17The notation makes it clear that while the likelihood function depends on all the parameters

Θ ∈
{
Θ̃, Θ̄

}
, we maximize this function only with respect to the subset Θ̃.

18An example of MC filter is the particle filter (Fernández-Villaverde and Rubio-Ramı́rez, 2007).
This filter is often used by the economic literature to estimate the distribution of the state variables
or to evaluate the likelihood of nonlinear models; e.g. models with occasionally binding constraints
(Gust et al., 2017; Atkinson et al., 2020; Aruoba et al., 2021) or with (endogenous) multiple equilibria
(Aruoba et al., 2018; Rottner, 2023).
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the policy functions and the DSS, which were described in Section 2.2. Consequently,

this step is not particularly time-consuming. Third, the NN particle filter is trained

to minimize the mean squared error between its predicted values and the likelihood

values evaluated in the second step.19

The NN particle filter undergoes training over thousands or even millions of op-

timization steps. Specifically, the training sample is divided into batches of size B.

Each batch is fed into the NN particle filter, which generates a vector of approximated

likelihoods. The loss is then calculated as the mean squared deviation with respect

to the likelihood values evaluated by the standard particle filter across batches. A

gradient-based optimizer adjusts the weights of the NN particle filter to minimize this

loss. This process continues until all points in the training sample have been used,

completing the first epoch. This procedure repeats for thousands of epochs. Over

epochs, the learning rate of the gradient descent method is progressively lowered,

allowing for broader exploration in earlier epochs and finer search in later epochs.

Dealing with overfitting. It is critical to prevent the NN particle filter from over-

fitting the training sample of drawn parameters. Overfitting occurs when NNs learn

too many details from the training sample, including noise generated by computa-

tional inaccuracies in the likelihood values approximated by an MC filter.

To mitigate the problem of overfitting, after training the NN particle filter, we

use a validation sample of quasi-randomly drawn parameter values. Importantly, we

do not optimize the weights of the NN when it is tested over the validation sample.

Therefore, the loss in the validation sample provides a helpful metric to determine

when to stop minimizing the loss criteria before the NN starts overfitting the training

sample. In Section 3.1, we show how to assess potential issues with overfitting of the

NN particle filter.

19It is often convenient to work directly with the log-likelihood. This approach entails summing
the log of the one-step-ahead predictive densities across all the periods in the sample, T . It should
be noted, however, that using the log-likelihood introduces a slight bias due to Jensen’s inequality
(specified for the logarithm as E(ln(X)) ≤ lnE(X)) because our approach relies on averaging.
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Bayesian estimation and forecasting. The NN approximation for the likelihood

explained above can be used to approximate the moments of the posterior distribution

for the parameters quite straightforwardly. Details on how to combine the likelihood

approximated with NNs and standard simulators of posterior draws, such as the

Random-Walk Metropolis-Hastings (RWMH) algorithm, are provided in Appendix

A. Our accompanying code relies on PyTorch as the machine learning framework.

”Real-time estimation and forecasting often entail the iterative estimation of

model parameters as new data becomes available. One way to do that in the context

of our methodology is to store the filtered states in the last period of the sample.

As the new data become available, we run the filter only over the new periods and

recompute the values of the likelihood to retrain the NN particle filter.

Another approach involves calculating the likelihood values using future data as

pseudo-state variables. We can train the NN that approximates the likelihood func-

tion by randomly drawing future data that have not yet been observed. As the data

are released, we can obtain the value of the likelihood in a fraction of a second from

the NN particle filter trained with simulated future data. The second approach could

be adjusted to accommodate data revisions for a few periods back.

2.4 Further discussion

The accuracy of estimation can be enhanced by adopting a sequential approach to

the proposed NN-based estimation method. First, parameter values can be drawn

from an uninformative unit hypercube to train the relevant NNs, which then provide

an approximation of the likelihood. Second, we use this approximated likelihood to

refine the bounds and the proposal distribution of the parameters in order to retrain

the NNs approximating the policy functions as well as the NN particle filter. This

iterative cycle could be repeated several times to improve accuracy.

Non-likelihood methods, such as the method of moments or impulse-response

matching, can be embedded in this framework. Instead of using the NN to approxi-
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mate the likelihood, NNs are trained using a loss function defined with respect to the

moments to match or impulse response functions.

3 Validation of the method

We provide three proofs of concept to establish the validity of our estimation method.

Specifically, we assess our NN-based method i) by comparing the policy functions and

the likelihood approximated with NNs to the true solution of a linearized small-scale

New Keynesian DSGE model, which admits analytical solution; ii) by comparing the

policy functions approximated with NNs to those obtained with a state-of-the-art

(non-NN) global method when solving a RANK model with a recurrently binding

ZLB constraint; iii) by showing the ability of our methodology to recover the true

parameter values of a nonlinear HANK model with an occasionally binding ZLB

constraint using simulated data.

3.1 Proof of concept 1: a linearized small-scale DSGE model

We consider an off-the-shelf three-equation New Keynesian model with one shock

(TFP shock). The model is log-linearized around its unique steady-state equilibrium

and the resulting equations are shown in Appendix B.

3.1.1 The extended policy functions

We use our NN approach to approximate the extended policy functions of the output

gap and inflation. For reasons explained earlier, we truncate the parameter space,

as shown in Table 1. We use 500,000 iterations to train the NN by minimizing the

residual error for the Euler equation and the Phillips curve. These policy functions

are conditioned on the state variable and the parameters, leaving us with nine input.20

20The NN contains five hidden layers with 256 neurons each. The activation function for the hidden
layers is continuously differentiable exponential linear units (CELU). The optimizer is AdamW.
The learning rate follows a cosine annealing scheduler starting from an initial rate of 1e − 4 and

16



Parameters LB UB Parameters LB UB
β Discount factor 0.95 0.99 θΠ Mon.pol. inflation response 1.25 2.5
σ Relative risk aversion 1 3 θY Mon.pol. output response 0.0 0.5
η Inverse Frisch elasticity 1 4 ρA Persistence TFP shock 0.8 0.95
φ Price duration 0.5 0.9 σA Std. dev. TFP shock 0.02 0.1

Table 1: Model parameters values – first proof of concept. The table shows the parameters
of the three-equation New Keynesian model. The lower bound (LB) and upper bound
(UB) show how we truncate the parameter space when training the NN to approximate
the model solution.

The batch size is set to 1, 000. We conduct five optimization steps to approximate the

policy functions. The convergence of the NN is shown in Figure 2, which underscores

a considerable degree of accuracy in approximating the two policy functions, with the

mean squared residual error averaged across the two loss components reaching values

around 10−10.

In Figure 3, we show the extended policy function of the output gap as the struc-

tural parameters of the model vary. The extended policy function is evaluated at a

negative one standard deviation shock, and the unvaried parameters are fixed at the

middle value of their bounds, shown in Table 1. The comparison with the analytical

solution demonstrates that our NN is able to replicate the true solution extremely

well as the lines almost perfectly coincide. It is also noteworthy that NNs have the

ability to approximate the nonlinearities in the policy function well.Identical conclu-

sions on the accuracy of the method can be drawn from a similar graph showing the

policy function of inflation (Appendix B).

3.1.2 Likelihood approximation and estimation

As a next step, we estimate the likelihood of this model with our NN approach.

We simulate inflation and the output gap from the linearized RANK model for 100

periods and use these simulated series as data. In the simulation, the parameters are

terminating at a rate of 1e− 6.
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Figure 2: Convergence of the neural network solution. The figure shows the dynamics of
the mean squared error. The loss is calculated as a moving average over 1000 iterations.
The vertical axis has a logarithmic scale.

set to the middle of their bounds.21

We train the NN particle filter using a sample of likelihood values evaluated at

10,000 quasi-random parameter draws.22 These likelihood approximations are ob-

tained by running the standard particle filter for each draw. When running the

particle filter, we choose a low number of particles (100 particles) to deliberately

add noise to the likelihood approximations with the objective of later illustrating the

problem of overfitting and how one can successfully deal with it. We will show that

even though the filter delivers only very noisy estimates of the likelihood, the NN

is able to correct this inaccuracy and interpolate the likelihood function by cutting

through the noise generated by the filter.

We divide our sample of 10,000 likelihood approximations into a training sam-

ple (80%) and a validation sample (20%). The NN is trained using the training

dataset across 20,000 epochs, wherein each epoch, the entire training dataset is pro-

cessed. The training sample is divided into batches of 100. Each batch is passed

21We add a small measurement error (5% of the variance of each observable variable) to avoid the
well-known problem of degeneracy of the likelihood function when using the particle filter.

22This NN contains 4 hidden layers with 128 neurons each. The activation function for the hidden
layers are CELU. The optimizer is AdamW. The learning rate follows a cosine annealing scheduler
from an initial level of 2e− 4 and terminating at 1e− 7.
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Figure 3: Accuracy of the NN solution method. Comparison between the analytical policy
function for the output gap and the approximation based on NNs. The values of the
fixed parameters in each graph are set to the middle of their bounds shown in Table 1.
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Figure 4: Training and validation convergence. The figure shows the total loss over the
training sample (left) and over the validation sample (right). An epoch is completed
when all the training or validation sample points are utilized. The vertical axis is
expressed in a logarithmic scale.

simultaneously to the optimization routine. An optimization step is completed when

the routine converges and returns the optimal NN weights. With 8,000 parameter

draws in our training sample, this optimization step is performed 80 times within

each epoch. In this application, we consider 20,000 epochs, resulting in a total of

1.6 million optimization steps across all epochs. The dynamics of total loss during

the training of the NN are depicted in Figure 4. The total loss converges to a value

whose magnitude reflects the accuracy of the particle filter, primarily dependent on

the number of particles used (in this case, 100 particles).

To assess potential concerns about overfitting of the NN particle filter, in the

right chart of Figure 4, we report the total loss when the likelihood is evaluated at

the parameters of the validation sample using the NN weights trained in every epoch

(x-axis). The proximity of errors across epochs in both samples, depicted on the

left and right charts, along with the consistent decrease in error over the validation

sample, suggests that the NN is not overfitting.

To more directly assess potential issues of overfitting, we compare likelihood ap-

proximations using different methods. In Figure 5, we plot how the likelihood –
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Figure 5: Accuracy in likelihood evaluations: NN particle filter vs. standard particle
filter. The logarithm of the likelihood of the model as a function of the risk aversion
parameter σ. The value of the fixed parameters is set to the middle of their bounds.

approximated with two alternative methods – varies with respect to the relative risk

aversion, σ. The orange dots denote likelihood values evaluated with a standard par-

ticle filter using only 100 particles. As expected, this approximation is poor due to the

limited number of particles used to deliberately exaggerate potential overfitting issues

for instructional purposes. The solid blue line depicts the likelihood approximation

using the NN particle filter, also trained with 100 particles for consistency.

Interestingly, the NN approximation cuts through the cloud of likelihood points

generated by the particle filter, effectively filtering out the noise the filter intro-

duces. Moreover, the parameter value at which the NN-approximated likelihood

peaks closely aligns with the true parameter value, as indicated by the vertical dot-

ted line. Appendix B shows how the approximated likelihood varies with respect to

other parameters.

3.2 Proof of concept 2: A RANK model with the ZLB

We evaluate the effectiveness of our NN estimation strategy in recovering the true

data-generating process of a stylized nonlinear RANK model augmented with a ZLB

constraint, which is detailed in Appendix C.
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Figure 6: Posterior distribution. Comparison of the posterior distribution approximated with
the NN method (solid blue), and a state-of-the-art global method (dashed red). The
vertical black dash line denotes the true value of each parameter. The posterior dis-
tribution is evaluated at its median by varying one parameter at a time.

First, we simulate output growth, inflation, and the nominal interest rate for 500

periods from the model. Second, we estimate the model with our NN-based estimation

method and with an alternative method combining a state-of-the-art global solution

method (Richter et al., 2014) and the particle filter (Herbst and Schorfheide, 2015).

While this alternative method is too slow for estimating more complex nonlinear

models, it serves as a useful benchmark for evaluating the effectiveness of our method.
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Our method demonstrates strong performance in recovering the parameters of the

true data-generating process. The posterior median closely aligns with the true value

and consistently falls within the 90% credible interval (shown in Appendix C). More-

over, the shape of the posterior closely resembles those obtained using the alternative

method, as shown in Figure 6. However, the alternative method is significantly slower

than our proposed NN method.

3.3 Proof of concept 3: A nonlinear HANK model

We now consider an off-the-shelf, stylized HANK model that features jointly idiosyn-

cratic and aggregate risk. The economy consists of a continuum of households. The

households choose consumption Ci
t , labor H

i
t , and assets Bi

t to maximize their utility:

E0

∑∞

t=0
βt exp(ζt)

[(
1

1− σ

)(
Ci

t

At

)1−σ

− χ

(
1

1 + η

)
(H i

t)
1+η

]
, (12)

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1+

ϵζt . At is the total factor productivity, which is nonstationary and introduces a trend

in consumption. The budget constraint in real terms can be written as:

Ci
t +Bi

t = τt

(
Wt

At

exp(sit)H
i
t

)1−γτ

+
Rt−1

Πt

Bi
t−1 +Divit, (13)

where Divit = Divt exp(s
i
t) is the dividend in real terms paid out to household i

and scaled by the level of its labor productivity, Wt is real wage, Rt is the gross

nominal interest rate, and Πt is the gross inflation rate. The taxation is progressive

and governed by γτ and τt. The wage is divided by the productivity level to avoid a

fiscal drag in taxation. The agents individual labor productivity sit follows an AR(1)

process in logs: sit = ρss
i
t−1 + ϵs,it . The agents face a borrowing limit B such that

Bt ≥ B, in every period t.

Firms are monopolistically competitive and face nominal rigidities à la Rotemberg
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with and φ denotes the price adjustment cost parameter. Total factor productivity,

At, follows a nonstationary process with trend growth: zt = ρzzt−1 + ϵzt . We denote

the average growth rate of TFP as ā.

Monetary policy sets the interest rate according to a standard rule that is subject

to a ZLB constraint. In symbols, Rt = max[1, Rn
t ], where R

n
t is the notional or shadow

interest rate that behaves as follows:

Rn
t = R

(
Πt

Π

)θΠ
(

Yt
AtY

)θY

exp(mpt), (14)

where Yt stands for output in period t and R and Y denote the DSS equilibrium

values of the nominal interest rate and output, respectively. Π denotes the inflation

target, which is a parameter. The monetary shock follows an AR(1) process: mpt =

ρmmpt−1 + ϵmt . All shocks are Gaussian, with standard deviations denoted by σl,

l ∈ {s, ζ, z,m}. The full description of the model is provided in Appendix D.

We estimate this model in its nonlinear specification using simulated data gener-

ated from the same nonlinear model.23 The objective is to assess whether our solution

and estimation methods based on NNs allow us to retrieve the “true” parameter val-

ues used to generate the simulated data. The model is simulated for 144 periods by

fixing the values of the parameters that will not be estimated at the values shown in

the upper panel of Table 2 and the values of the parameters that will be estimated at

the values shown in the column labelled “True” in the lower panel of the table. The

observable variables are output growth, inflation, and nominal interest rate. In the

lower panel of Table 3, we show the prior distributions for the parameters to estimate.

Prior elicitation is presented in the next section when the model is estimated with

actual data. The prior mean is set to the true value of the parameters.

23Little is known about the existence and uniqueness of rational expectations equilibria for nonlin-
ear heterogeneous agent models. Acharya and Dogra (2020) derive the conditions for determinacy
for HANK models with linearly approximated aggregate dynamics. We always check that these
conditions are satisfied in our analysis. Additionally, highly persistent or highly volatile preference
shocks may lead to nonexistence of a stable equilibrium in DSGE models with a ZLB constraint
(Bianchi et al., 2021). We rule out these non-stationary equilibrium dynamics by appropriately
truncating the prior for these two parameters in all the applications where this can be an issue.
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Calibrated Parameter Values

Parameters Value Target/Source

β Discount factor 0.9975 4% nominal interest rate
η Inverse Frisch elasticity 0.72 Chetty et al. (2011)
σ Relative risk aversion 1 Log utility
ā Average growth rate 1.0033 Real GDP growth = 0.33% (quarterly)
χ Disutility labor 0.74 Labor supply is approximately 1
γτ Tax progressivity 0.18 Heathcote et al. (2017)
D DSS government debt 1.0 Wealth share=25% GDP (Kaplan et al., 2018)
Π Inflation target 1.00625 Inflation target = 2.5% (annualized)
ρs Persistence labor prod. 0.9 Share of borrowers = 34%
ρζ Persistence pref. shock 0.7 Frequency of ZLB = 15%

Estimation
Par. True Prior NN

Value Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters affecting the DSS

100σs 5.00 Trc.N 5.00 1.000 2.50 10.0 4.28 3.17 5.31
B −0.50 Trc.N −0.50 0.010 −0.65 −0.35 −0.50 −0.54 −0.46

Other parameters

φ 100 Trc.N 100 5.000 70 120 100 92 108
θΠ 2.25 Trc.N 2.25 0.125 1.75 2.75 2.40 2.25 2.55
θY 1.00 Trc.N 1.00 0.025 0.75 1.25 1.01 0.97 1.05
ρz 0.40 Trc.N 0.40 0.025 0.20 0.60 0.40 0.37 0.45
ρm 0.90 Trc.N 0.90 0.005 0.85 0.95 0.90 0.89 0.91

100σζ 1.50 Trc.N 1.50 0.100 1.00 2.00 1.45 1.34 1.57
100σz 0.40 Trc.N 0.40 0.100 0.30 0.60 0.36 0.32 0.40
100σm 0.06 Trc.N 0.06 0.010 0.05 0.20 0.06 0.05 0.07

Table 2: Parameters of the nonlinear HANK model. The upper panel shows the calibrated
parameters for the nonlinear HANK model. The lower panel shows the true values used
for simulating the model in Section 3.3 as well as the prior and the posterior distributions.
Trc.N stands for truncated normal distribution.

The posterior moments of the estimated parameters are shown in the lower panel

of Table 2. The estimation includes 10 structural parameters. The posterior median
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is very close to the true value, underscoring the ability of the method to retrieve the

true values of the parameters. In particular, the true value is mostly contained in the

90% credible interval for all parameters.

Note that the interest rate and the output targets (R and Y ) in the monetary

policy rule (14) are defined using their values at the DSS, which are affected by

parameters we want to estimate (σs and B). Therefore, as explained in Section 2,

we need to train a separate NN for the task. Overall, we set up NNs to perform

the following four tasks: (i) characterization of the deterministic steady state (DSS)

equilibrium; (ii) approximation of the aggregate policy functions; (iii) approximation

of the individual policy functions; (iv) approximation of the particle filter needed to

evaluate the likelihood.

To approximate the mapping from the parameters to the DSS equilibrium values,

we set the number of agents L to 100, implying a problem with 200 state variables –

the four aggregate shocks are shut down in the DSS – and 2 pseudo-state variables

(the parameters affecting the steady state – i.e., σs and B). The batch size is set to

100. The NN has four layers. We use 128 neurons in each layer and rely on CELU

and PReLU as activation functions.24

The next step is to solve the HANK model in its nonlinear specification with

idiosyncratic and aggregate risk. We train two NNs to approximate the aggregate

and idiosyncratic extended policy functions on the 204 states and 10 parameters.25

In Appendix E.2, we provide more information about how these two NNs are trained.

The NN trained to approximate the policy functions has five hidden layers. We use

128 neurons in each layer and rely on CELU and PReLU as activation functions.

24To solve the system of equations in the DSS, it is necessary to also solve for the individual
agents’ policy functions. Therefore, we employ a temporary NN that maps agents’ individual states
and parameters to their labor decisions. The loss function is conditioned on the Euler equation,
adjusted for the borrowing limit and market clearing. Details are in Appendix E.1.

25The NN for the individual policy functions is also conditional on the individual agent’s state
variables. We capture the Karush-Kuhn-Tucker conditions due to the borrowing limit using the
Fischer-Burmeister equation, as discussed in Appendix E. Alternatively, the constraints could be
directly embedded in the NN architecture, e.g., in Azinovic and Žemlička (2023).
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Finally, we train the NN particle filter. We draw from the parameter space and

generate 15,000 likelihood values with a standard version of the particle filter. We

use 75% of these values to train the NN (training sample) and the remaining values

to validate the NN (validation sample). The NN features 64 nodes and four hidden

layers. We use SiLU (Sigmoid Linear Unit) as an activation function. The NN is

trained over 2,500 epochs with a batch size of 100.

After completing the training and validation of the NN, we can rapidly evaluate

the likelihood for a large number of parameter values. Consequently, we are now

able to execute the RWMH algorithm to approximate the moments of the posterior

distribution for the parameters. We generate 1 million parameter draws (after a

burn-in) to approximate the posterior distribution. We target an acceptance rate of

20% − 40%. Details on how we conduct the posterior simulation step via RWMH

are provided in Appendix A. It takes approximately three days with a GPU (Nvidia

Tesla V100 32GB) to estimate the HANK model.

4 Estimation with actual data

In this section, we show how to apply our methodology to estimate the nonlinear

HANK model introduced in Section 3.3 using actual data.

4.1 Data, calibrated parameters, and priors

To estimate the nonlinear HANK model, we use data on U.S. quarterly real per-capita

GDP growth, U.S. quarterly GDP deflator inflation rate, and the shadow interest rate

estimated by Wu and Xia (2016). The model’s counterpart of the shadow rate is the

notional rate, Rn
t – representing the interest rate that would have been set by the

central bank in the absence of the ZLB constraint. All observables are in percent

and annualized. Our analysis covers a sample period starting from the first quarter

of 1990 and extending through the fourth quarter of 2019. To avoid degeneracy
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problem in evaluating the likelihood, we introduce an i.i.d. measurement error for

each observable.

While it is feasible to include cross-sectional variables directly in our estimation

exercise, we prefer to introduce cross-section information via the prior distribution

for the volatility of the idiosyncratic income risk. Research on likelihood estimation

combining aggregate and cross-sectional data is still at an early stage, and we believe

it is not desirable to have too many new features in this application of our method

(e.g. Liu and Plagborg-Møller, 2023).

However, one might question if we can identify the idiosyncratic income risk, σs,

from aggregate data without incorporating any information on the wealth distribution

in the estimation process. It is indeed possible because due to the occasionally bind-

ing ZLB constraint, the level of idiosyncratic income risk can significantly influence

macroeconomic volatility in the model. We illustrate these effects in Section 4.4.

We calibrate some parameters of the model, and their values are presented in the

upper panel of Table 2. We set the discount factor β = 0.9975 to be consistent with

a low interest rate environment characterizing our sample period. The inverse Frisch

elasticity η is based on Chetty et al. (2011). The labor disutility χ is set such that

labor supply is normalized to 1 in the steady state of a RANK model. The average

growth rate of the economy, ā, is set to match the average real GDP growth rate over

our sample period. Tax progressivity, γτ , follows the estimated value of Heathcote

et al. (2017). We set the level of government debt equal to 25% of annual GDP in

line with the estimate of liquid wealth in Kaplan et al. (2018). The persistence of

the labor productivity ρs is set to 0.9 to target a share of borrowers around 1/3. The

persistence of the preference shock ρζ is set to 0.7; a value implying a ZLB frequency

broadly in line with the data. The variance of the measurement error is set to equal

5% of the in-sample variance of the observable variables as in Gust et al. (2017).

The priors distribution is shown in the lower panel of Table 2. The prior distri-

butions are centered at values that are broadly consistent with the parameter values
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of linearized RANK models estimated in the literature. Regarding the parameters

affecting the DSS, the prior mean of the borrowing limit is set to approximately 2

month labor income as in Fernández-Villaverde et al. (2023b), while the prior of id-

iosyncratic income volatility is set in line with the Gini coefficient on the US wealth

inequality measured by the World Inequality Database over a period ranging from

1990 to 2019.

4.2 Neural networks based estimation

Given that the model is identical to the one of Section 3.3, we can use the same NNs

trained to approximate the DSS and the extended policy functions. However, we must

train the NN particle filter again due to the different dataset. Details regarding the

specifications of the NNs and convergence statistics are provided in Appendix E.2.

After completing the training of these NNs, evaluating the likelihood of the non-

linear HANK model takes only seconds. Hence, we can conduct the RWMH exactly

as discussed in Section 3.3, aiming for an acceptance rate of 20%− 40%. Details on

how to perform Bayesian estimation of this model are provided in Appendix A.

The posterior moments are shown in Table 3. Bayesian updating is modest for

most parameters despite our prior standard deviation being fairly large and the av-

erage acceptance rate of the RWMH being around 27%. Since the prior mean for

these parameters was set to reflect typical estimates from linearized RANK models,

we interpret this finding as suggesting that heterogeneity and nonlinearities do not

lead to substantial revisions to the estimated values of those parameters.26

The Bayesian updating is somewhat stronger for the standard deviation of the

idiosyncratic income shock, σs. The posterior median is 2 percentage points above the

prior median. The interactions between heterogeneity and nonlinearities, particularly

the nonlinear ZLB constraint, play a critical role in identifying this parameter. As

26Bayesian updating might be stronger if more observable variables (e.g., consumption or wages)
are used in estimation but this requires extending the HANK model, which is feasible but beyond
the scope of this methodological paper.
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Estimation

Par. Prior NN

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters affecting the DSS

100σs Trc.N 5.00 1.000 2.50 10.0 7.04 5.67 8.10
B Trc.N −0.50 0.010 −0.65 −0.35 −0.50 −0.54 −0.46

Other parameters

φ Trc.N 100 5.000 70 120 101 94 107
θΠ Trc.N 2.25 0.125 1.75 2.75 2.43 2.20 2.67
θY Trc.N 1.00 0.025 0.75 1.25 0.96 0.92 1.00
ρz Trc.N 0.40 0.025 0.2 0.6 0.43 0.39 0.47
ρm Trc.N 0.90 0.005 0.85 0.95 0.91 0.90 0.91

100σζ Trc.N 1.50 0.100 1.00 2.00 1.22 1.10 1.33
100σz Trc.N 0.40 0.100 0.30 0.60 0.47 0.43 0.53
100σm Trc.N 0.06 0.010 0.05 0.20 0.15 0.14 0.16

Table 3: Prior and Posterior distributions. Prior and posterior moments for the estimation
with real data. The prior type indicates the prior density function. Trc.N stands for
truncated normal distribution.

we will show, in our model, an increase in the level of idiosyncratic income risk (σs)

heightens the ZLB risk and frequency, leading to greater volatility in output and

inflation, which are observed in estimation.

4.3 How good is what we got?

The empirical fit of the model is quite promising given the stylized nature of the

HANK model we have estimated. In Table 4, we compare the second moment of the

observables in the estimated HANK model and in the data. The standard deviation

of output growth, inflation, and the nominal interest rate in the model are quite close

to the ones measured in the data.
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Standard deviations Autocorrelations Avg. Gini coef.

Model Data Model Data Model Data

GDP 0.6947 0.5831 GDP 0.1355 0.4050
Inflation 1.1511 0.9045 Inflation 0.8146 0.5456 Wealth 0.8793 0.8410
FFR 2.561 2.7537 FFR 0.7219 0.9707

Table 4: Moments comparison: model vs. data. The table reports the standard devia-
tions (left panel) and the autocorrelation coefficients (middle panel) in the model and
in the U.S. data for the three observable variables: real GDP growth (GDP), GDP de-
flator growth (Inflation), and the federal funds rate (FFR). The right panel of the table
shows the average Gini coefficient in the model and in the U.S. data (World Inequality
Database). The model-implied moments are obtained by simulating the estimated model
for 1,000,000 periods and with parameters set at the posterior median. The empirical
moments are computed over the sample period used in estimation (1990:Q1-2019:Q4).

The match is somewhat unsatisfactory, when it comes to the serial correlation

of the three observables. This finding underscores the need for extensions of the

HANK model aimed at enhancing its endogenous persistence mechanism. Introducing

additional nominal and real frictions could be an effective strategy for improving the

empirical fit of the stylized nonlinear HANK model we have estimated.

Acharya et al. (2023) estimate a HANK model using likelihood methods and

find that its empirical performance is inferior to that of a state-of-the-art RANK

model. One potential reason for this subpar performance is the challenge of accurately

estimating certain parameters of the HANK model, particularly those affecting its

DSS, due to the high computational cost of recomputing it. Our NN estimation

method addresses this challenge by efficiently solving the steady state equilibrium of

HANK models, allowing the estimation of these parameters. In contrast to Acharya

et al. (2023), we estimate the fully nonlinear version of a HANK model, including the

ZLB constraint.

In Table 4, we also present the average Gini index of the wealth distribution in

our model, which we estimated without observing any cross-sectional data, alongside

the corresponding index measured by the World Inequality Database for the US over

the same sample period of our estimation. The two coefficients are quite close.
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Figure 7: Aggregate policy functions of the nonlinear HANK model. The figure illus-
trates how equilibrium output (left) and nominal interest rate (right) vary as a function
of some realizations of the preference shock, ζt. The three colored lines denote the two
policy functions when the standard deviation of the idiosyncratic shock to households’
income, σs, is set to 0.050 (prior mean), 0.070 (posterior median), and 0.090. The
value of the other parameters is set to their posterior median.

4.4 Interactions between heterogeneity and nonlinearities

In this section, we emphasize the importance of preserving aggregate nonlinearity

when estimating a HANK model. Figure 7 illustrates how output (left chart) and

nominal interest rate (right chart) vary with preference shocks (x-axis) in the esti-

mated model. The three lines represent different levels of volatility of idiosyncratic

shocks to income, with the red dashed line indicating the value consistent with the

posterior median of this parameter (our estimate). The blue solid line represents their

value at the prior mean for the volatility of idiosyncratic shocks. When the prefer-

ence shock is negative, households save more, leading to a contraction in aggregate

demand. Consequently, output declines, explaining the upward slope of the aggregate

policy function on the left side of the plot.

For sufficiently negative realizations of preference shocks, the slope of the aggre-
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gate policy functions for output becomes steeper. The kink in this function occurs at

the point where the negative preference shock is large enough to cause a contraction

in aggregate demand leading to the ZLB constraint becoming binding. The binding

ZLB constraint exacerbates the fall in aggregate demand by constraining monetary

policy, resulting in a more pronounced decline in output.

When the idiosyncratic risk is higher (moving from the blue solid line to the black

dashed-dotted line), output increases as households want to work more in response

to heightened income risk. The effects of a larger idiosyncratic risk on output are

less pronounced when the interest rate is constrained by the ZLB, indicated to the

left of the kink points in the left chart. In this scenario, an increase in idiosyncratic

risk prompts households to save more, thereby reducing the real interest rate and

prolonging the expected duration of the ZLB. This, in turn, has contractionary effects

on real activity. Consequently, the positive effects of a larger idiosyncratic risk on the

level of output are weaker when the economy is at the ZLB.

A higher idiosyncratic income risk increases the frequency of the ZLB constraint.

This effect is evident by observing the shift in the kink point of the policy function for

the interest rate to the right as idiosyncratic income risk rises (i.e., moving from the

solid blue line to the black dashed-dotted line on the right chart of Figure 7). This

shift in the kink indicates that it would require less severe (negative) realizations of

the preference shock to drive the nominal interest rate to the ZLB. Since smaller

realizations of the preference shocks are more likely to occur, the risk of encountering

the ZLB increases when idiosyncratic risk becomes larger.

Idiosyncratic risk and aggregate output volatility. The ZLB constraint inter-

acts significantly with idiosyncratic income risk, amplifying the volatility of macroe-

conomic variables. In Figure 8, we illustrate that a heightened risk of encountering

the ZLB amplifies output volatility in our nonlinear HANK model. This amplification

is represented by the vertical distance between the blue solid line and the red dashed-
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Figure 8: Volatility of output and ZLB frequency. Left chart : Volatility of output as a
function of the idiosyncratic risk in the estimated model (blue solid line) and in the
counterfactual case in which the ZLB is not enforced (red dashed-dotted line). The
reported volatility is expressed in percentage deviations from its posterior median.
Right chart : Frequency of ZLB episodes as a function of the idiosyncratic risk in the
estimated model (blue solid line). Frequency of episodes when the interest rate turns
negative in the counterfactual case in which the ZLB is not enforced (red dashed-
dotted line). In both charts, the vertical black dashed line marks the value of the
posterior median of the standard deviation of idiosyncratic shocks. The value of the
other parameters is set to their posterior median. The standard deviation of output
(in deviations from balanced growth) and the frequency of the ZLB and the frequency
of negative interest rate are computed by simulation (100,000 periods).

dotted line. The ZLB risk exacerbates output volatility because the effectiveness of

monetary policy in stabilizing the economy at the ZLB is diminished. The vertical

black line, representing the estimated volatility of idiosyncratic risk, shows that ap-

proximately 22 percentage points of GDP volatility are explained by the occasionally

binding ZLB constraint.

Importantly, the amplification effect of the ZLB on output volatility intensifies

with higher levels of idiosyncratic income risk. In Figure 8, we observe that the

vertical distance between the solid blue line and the red dashed-dotted line expands

as the level of idiosyncratic risk increases along the x-axis.

To delve into the rationale behind this finding, we examine how the frequency of
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encountering the ZLB changes with the level of idiosyncratic risk. As shown by the

blue solid line on the right chart, as idiosyncratic risk increases, the ZLB becomes

binding more often. This occurs because higher idiosyncratic risk reduces the nominal

interest rate, leading to a heightened frequency of encountering the ZLB. With the

ZLB binding more frequently, recessions and deflation episodes become more severe,

ultimately amplifying macroeconomic volatility.

If we were to relax the ZLB constraint, the frequency of negative interest rates

would decrease by roughly 6 percentage points in the estimated model. This difference

is illustrated by the vertical distance between the solid blue line and the red dashed-

dotted line at the posterior median on the right chart.

The relationship between the frequency of negative interest rates and the level

of idiosyncratic risk remains positive – albeit somewhat less strong – even when the

ZLB constraint is not enforced, as indicated by the red dashed-dotted line on the

right chart. This is because higher idiosyncratic income risk prompts households

to increase precautionary savings, thereby depressing the nominal interest rate and

making it more likely for nominal interest rates to fall into the negative territory.

An important takeaway is that the parameter σs, which governs the level of id-

iosyncratic risk, can be identified using the volatility of output and inflation in non-

linear HANK models featuring the ZLB constraint. Therefore, observing any cross-

sectional variables in estimation is not strictly necessary to identify the volatility of

idiosyncratic income risk in our application.

The deflationary bias. Another advantage of preserving the nonlinear features of

a HANK model is the ability to assess the deflationary bias resulting from the occa-

sionally binding ZLB constraint. As shown by Fernández-Villaverde et al. (2023b),

in a nonlinear HANK model, the deflationary bias is influenced by the volatility of

idiosyncratic income shocks. Our estimated nonlinear HANK model predicts a defla-

tionary bias of around 30 basis points, measured as the difference between the DSS
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inflation rate, Π, and the average inflation rate in the model – often termed stochastic

or risky steady-state inflation rate.

Our results should be interpreted as a conservative estimate of the deflationary

bias, given the limited degree of heterogeneity in our model – for example, agents

only trade one asset. HANK models with more sophisticated heterogeneity could

exhibit much more significant interactions, potentially introducing dynamics beyond

the scope of our simple HANK model. Exploring this avenue further could be an

interesting direction for future research.

5 Concluding remarks

We have introduced a novel method based on machine learning techniques to esti-

mate nonlinear dynamic general equilibrium models with heterogeneous agents. Our

approach offers three significant advantages: i) it enables the estimation of models

featuring a large set of state variables, ii) it can capture nonlinear dynamics, such as

the ZLB constraint or borrowing limits, and their interactions with the decisions of

heterogeneous agents, iii) it allows the estimation of parameters affecting the model’s

steady-state equilibrium. Future applications of the proposed methodology include

nonlinear models with a very large set of state variables, such as models with multiple

sectors or multiple countries.

We applied our techniques to estimate the likelihood of a nonlinear HANK model

using US data. Standard macroeconomic data can identify the degree of idiosyncratic

risk, as this risk influences the frequency of ZLB episodes and, consequently, aggregate

volatility. Despite its relatively stylized nature, the estimated nonlinear HANK model

exhibits a very promising ability to match key moments in the data as well as the

average level of wealth inequality. Our exercise also highlights how the model can be

improved to achieve an even better empirical performance.
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Online Appendix

A Neural network based Bayesian estimation

The following Random Walk Metropolis-Hastings (RWMH) algorithm can be used

to estimate the parameters Θ̃, where we use the NN approximation of the likelihood

function. To integrate our NN approach for Bayesian estimation, we adapt the RWMH

algorithm of Atkinson et al. (2020).27 The approach is as follows:

1. Initialize the algorithm: Obtain a first proposal density from which the param-

eters: Θ̃ are drawn, as follows:

Draw from the prior distribution a candidate vector Θ̃New. Evaluate the

log-likelihood of the candidate vector using the trained NN for the particle

filter logLΘ̄

(
Y1:T |Θ̃New

)
and combine it with the prior to obtain the log-

posterior log g(Y1:T |Θ̃New).

Repeat these steps N init times and collect all draws as Θ̃init. Construct

an approximation for the covariance matrix by selecting draws where the

likelihood is above the 90% quantile, denoted by Θ̂, and subtract the mean

Θ̈ = Θ̂− ¯̂
Θ. Calculate the covariance matrix Σ = (Θ̈Θ̈′)/(0.1N init). Set Θ̆

to equal the mode, the draw associated with the highest likelihood.

2. Run the RWMH algorithm as burn-in. Repeat the steps below NBurn times:

Draw a new parameter vector Θ̃New from the proposal density to evaluate

the log-posterior. The proposal density is a multivariate normal distri-

bution with mean vector Θ̆ and covariance matrix cΣ, where c is set to

achieve an acceptance rate between 20 and 40%.

27See also Herbst and Schorfheide (2015) for more information on RWMH.
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Evaluate the log-likelihood of the parameter vector using the trained

NN for the particle filter logLΘ̄

(
Y1:T |Θ̃New

)
and combine it with the

prior to obtain the log-posterior log g(Y1:T |Θ̃New). Accept the draw if

exp(log g(Y1:T |Θ̃New)− log g(Y1:T |Θ̃)) is larger than the draw from a stan-

dard uniform distribution. If the draw is accepted, the mean of the pro-

posal density is updated to Θ̆ = Θ̃New.

3. Use these NBurn draws to get an updated proposal density:

Keep only the last 75% of draws, denoted as Θ̂b. Calculate the deviations

of each draw from the mean Θ̈b = Θ̂b− ¯̂
Θb. Calculate the covariance matrix

Σb = (Θ̈bΘ̈b′)/(0.75NBurn). Calculate the mode Θ̆b and update the mean

of the proposal density Θ̆ = Θ̆b.

4. Run the RWMH algorithm to obtain the posterior:

Use the proposal density from above and repeat the steps below N final

times: Draw a new parameter vector Θ̃New from the proposal density to

evaluate the log-posterior. The proposal density is a multivariate normal

distribution with mean vector Θ̆ and covariance matrix cΣ, where c is again

tuned to have an acceptance rate that is between 20-40%. Evaluate the log-

likelihood of the parameter vector using the trained NN for the particle

filter logLNN
Θ̄

(
Y1:T |Θ̃New

)
and combine it with the prior to obtain the

log posterior log g(Y1:T |Θ̃New). Accept the draw if exp(log g(Y1:T |Θ̃New)−

log g(Y1:T |Θ̃)) is larger than the draw from a standard uniform distribution.

If the draw is accepted, the mean of the proposal density is updated to

Θ̆ = Θ̃New.

5. N final draws characterize the posterior distribution.
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B Linearized DSGE model

The model is a prototypical three-equation New Keynesian DSGE model with a TFP

shock. The model is log-linearized around its unique steady-state equilibrium, which

results in the following equations.

Ŷt = EtŶt+1 − σ−1
(
R̂t − EtΠ̂t+1

)
, (15)

Π̂t = κ(Ŷt − Ŷt
∗
) + βEtΠ̂t+1, (16)

R̂t = ϕΠΠ̂t + ϕY X̂t, (17)

Ŷ ∗
t = ωÂt, (18)

Ât = ρAÂt−1 + σAϵ
A
t , (19)

where we define ω = (1+ η)/(η+σ) as well as κ = (1−ϕ)(1−ϕβ)(σ+ η)/ϕ. Output

is defined as Ŷt = (Yt−Y )/Y , inflation as Π̂t = Πt−Π, nominal rate as R̂t = Rt−R,

output in the flex price economy as Ŷ ∗
t = (Y ∗

t −Y ∗)/Y ∗, TFP as Ât = (At−Y )/A, and

the output gap as X̂t = Ŷt− Ŷ ∗
t . The shock ϵ

A
t follows a standard normal distribution.

After some manipulations, the model equations can be written as:

X̂t = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂∗

t

)
, (20)

Π̂t = κX̂t + βEtΠ̂t+1, (21)

R̂∗
t = ρAR̂

∗
t−1 + σ(ρA − 1)ωσAϵ

A
t , (22)

where R̂∗
t is the natural rate of interest, which follows an exogenous process derived

from the TFP process.

We set up the NN as in section B.1 and train it by minimizing the residual error

constructed from equations (20) and (21). The law of motion of the exogenous state

variable, described in equation (22), is used for sampling.

The analytical solution for the output gap X̂t and inflation Π̂t, which can be
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derived with the method of undetermined coefficients, is given as:

X̂t =
1− βρA

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂∗

t (23)

Π̂t =
κ

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂∗

t (24)

The analytical solution underscores the idea of extended policy functions, which are

simultaneously conditioned on the parameters and state variables. The analytical

solution for the output gap and inflation depends on both the state variable R̂∗
t and

the parameters.

B.1 Mapping of the model to the general framework

We can map the linearized NK model in the general form of the solution method

outlined in section 2.2. The state variable, the structural shock, and the control

variables of the model are:

St =
{
R̂∗

t

}
, and νt =

{
ϵAt
}
, and ψt =

{
X̂t, Π̂

}
. (25)

The parameters of the model are divided into calibrated (θ̄), which is an empty set

in this application, and estimated ones (θ̃):

Θ̃ = {β, σ, η, ϕ, θΠ, θY , ρA, σA} . (26)

The NN ψNN is trained to determine the output gap and inflation:X̂t

Π̂t

 = ψNN

(
St, Θ̃|Θ̄

)
. (27)

B.2 Neural network for inflation

Figure 9 shows the extended policy function for inflation that is conditioned on the

parameters.
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Figure 9: Accuracy of the NN solution method. Comparison between the analytical policy
function for inflation and the approximation based on NNs. The values of the fixed
parameters in each graph are set to the middle of their bounds.
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B.3 Neural network for likelihood approximation

Figure 10 shows the likelihood produced by the NN for varying different parameters

(blue line). The orange dots show the mapping between the parameter and the

likelihood directly coming from the particle filter.

C Proof of concept 2: Comparison to a state-of-

the-art estimation method for nonlinear models

We now assess whether our NN estimation method can recover the true data-

generating process of a nonlinear model. Specifically, a nonlinear RANK model with a

ZLB. Furthermore, we compare the results with a state-of-the-art estimation method

for nonlinear macroeconomic models. This method involves solving the model using

global methods and then evaluating the likelihood using a particle filter for every

draw of the Metropolis-Hastings algorithm.

C.1 A nonlinear RANK model with the ZLB constraint

We use a small-scale RANK model with the ZLB as a nonlinear element.

Households. The economy consists of a representative household. The household

chooses consumption Ct, labor Ht and assets Bt to maximize their utility:

E0

∑∞

t=0
βt exp(ζt)

[(
Ct

1− σ

)1−σ

− χ

(
1

1 + η

)
(Ht)

1+η

]
,

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1+

ϵζt . Ct is aggregate consumption. The budget constraint in real terms is:

Ct +Bt = WtHt +
Rt−1

Πt

Bt−1 − Tt +Divt, (28)
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Figure 10: Accuracy in likelihood evaluations: NN particle filter vs. standard particle
filter. The log-likelihood of the model as a function of different parameters. The
value of the fixed parameters is set to the middle of their bounds.
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where Divt is the real dividend, Wt is real wage, Rt is the nominal interest rate, Πt

is the inflation rate and Tt is real lump sum tax. The first-order conditions are:

1 = βRtEt

[(
exp(ζt+1)

exp(ζt)

)(
Ct

Ct+1

)σ
1

Πt+1

]
, (29)

χ(Ht)
η = (Ct)

−σWt. (30)

Firms. The firm sector consists of a continuum of final goods producers and in-

termediate goods firms. The final goods retailers buy the intermediate goods and

transform them into a homogeneous final good using a CES production technology:

Yt =

(∫ 1

0

(Y j
t )

ϵ−1
ϵ dj

) ϵ
ϵ−1

, (31)

where Y j
t is the output of intermediate goods firm j. The equilibrium price of the

final good and the demand for the intermediate goods of firm j can be expressed as:

Pt =

(∫ 1

0

(P j
t )

1−ϵdj)

) 1
1−ϵ

, and Y j
t =

(
P j
t

Pt

)−ϵ

Yt. (32)

Intermediate goods producers are monopolistically competitive. The firm j uses labor

N j
t as input to produce output Y j

t with the following production technology:

Y j
t = AN j

t , (33)

where A is the total factor productivity. Labor is hired in competitive markets, where

the wage is determined as follows:

Wt = AMCt. (34)

The firm j sets the price of its goods to maximize its profit subject to the demand

curve for intermediate goods and Rotemberg adjustment costs for changing prices:

max
P j
t

P j
t

(
P j
t

Pt

)−ϵ
Yt
Pt

−MCt

(
P j
t

Pt

)−ϵ

Yt −
φ

2

(
P j
t

ΠP j
t−1

− 1

)2

Yt, (35)
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where Π is the inflation target of the central bank. Imposing a symmetric equilibrium

and discounting future profits with the real interest rate, the New Keynesian Phillips

curve can be written as:[
φ

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + φEt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt

]
, (36)

where Πt = Pt/Pt−1. The Rotemberg adjustment costs are given back as a lump sum.

The real dividends paid out by the firm sector are Divt = Yt −WtNt.

Policy makers. The central bank sets the nominal interest Rt using a Taylor rule

that responds to inflation and output deviations from their targets Π and Y . The

ZLB restricts the nominal interest rate. The rule is given as follows:

Rt = max

[
1, R

(
Πt

Π

)θΠ
(
Yt
Y

)θY
]
. (37)

The fiscal authority follows a passive policy rule, where it uses lump-sum taxes Tt

to keep their debts D on a constant path:

D =
Rt−1

Πt

D − Tt. (38)

C.2 Mapping of the model to the general framework

We can map the RANK model in the general form of the outlined estimation proce-

dure. The state variable, the structural shock, and the control variables are:

St = {ζt} , and νt =
{
ϵζt

}
, and ψt = {Nt,Πt} . (39)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ = {β, σ, η, ϵ, χ} , (40)

Θ̃ = {θΠ, θY , φ, ρζ , σζ} . (41)
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The NN is trained to determine labor supply and inflation, which is sufficient to back

out other variables:Nt

Πt

 = ψNN

(
St, Θ̃|Θ̄

)
. (42)

C.3 Data-generating process

The calibrated model is used as a data-generating process, providing a controlled en-

vironment for the estimation. The upper panel of Table 5 summarizes the calibration

of the model, with parameters chosen such that the model occasionally encounters the

ZLB. We use our developed approach to estimate the nonlinear model in a Bayesian

setup. We then compare the results to an estimation with a state-of-the-art (non-NN)

approach. The observables are the annualized quarterly output growth rate, annual-

ized quarterly inflation rate, and the nominal interest rate, which are generated with

the calibrated model and cover a span of 500 periods.

C.4 Estimation

Priors. The prior distributions are truncated normal densities.28 The prior mean

corresponds to the true value, while the standard deviation σ is loose to avoid the

results being driven by the prior. The truncation ensures that the drawn parameters

lie inside the bounds that have been imposed while solving the NN. The lower panel

of Table 5 summarizes the priors.

Measurement equation. We base the analysis on the annualized quarterly output

growth rate, annualized quarterly inflation rate, and nominal interest rate. All data

28The probability density function of the truncated normal is f(x;µ, σ, a, b, ) =
1
σ

ϕ((x−µ)/σ)
Φ((b−µ)/σ)−Φ((a−µ)/σ) . If the bounds are not symmetric, the parameter µ does not corre-

spond to the mean of the truncated normal. For simplicity, we refer to µ as the mean independent
of the bounds.
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True parameters for the data-generating process
Parameters Value Parameters Value
β Discount factor 0.9975 θΠ Mon. pol. inflation response 2
σ Relative risk aversion 1 θY Mon. pol. output response 0.25
η Inverse Frisch elasticity 1 4 log(Π) Inflation target (annualized) 2
ϵ Price elasticity demand 11 Y Output target 1
χ Disutility labor 0.91 ρζ Persistence preference shock 0.7
φ Rotemberg pricing 1000 100σζ Std. dev. preference shock 2

Estimation
Par. Prior NN Alternative Approach

Type Mean Std
Lower Upper Posterior Posterior
Bound Bound Median 5% 95% Median 5% 95%

θΠ Trc.N 2.0 0.1 1.5 2.5 2.04 1.92 2.15 2.06 1.93 2.20
θY Trc.N 0.25 0.05 0.05 0.5 0.250 0.240 0.260 0.248 0.237 0.260
φ Trc.N 1000 50 700 1300 985 921 1047 970 909 1033
ρζ Trc.N 0.7 0.05 0.5 0.9 0.69 0.671 0.707 0.688 0.670 0.707
σζ Trc.N 0.02 0.0025 0.01 0.025 0.020 0.019 0.021 0.020 0.019 0.021

Table 5: Parameters of the nonlinear RANK model. The upper panel shows the calibrated
parameters for the nonlinear RANK model. The lower panel shows the true values used
for simulating the model, the prior distributions as well as the posterior distributions.
The posterior is displayed for the NN-based estimation and an alternative (non-NN)
state-of-the-art approach. Trc.N stands for a truncated normal distribution.

are in percent. The measurement equation is given as:
Output Growth

Inflation

Interest Rate

 =


400

(
Yt

Yt−1
− 1
)

400 (Πt − 1)

400 (Rt − 1)

+ ut, (43)

where the measurement error follows a Gaussian distribution ut ∼ N (0,Σu). The

variance of the measurement error for each time series is a fraction mE of its own

variance. We set mE = 0.1.

Training of the extended policy functions. The computationally most chal-

lenging step in the estimation is the first one, where we solve for the policy functions.

The NN approximates the labor and consumption policy and is conditioned on the
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state variables and parameters to estimate. The network is trained by minimizing

the Euler equation and New Keynesian Phillips curve errors.

We use 100,000 iterations to train the NN.29 The batch size is set to 100, which can

be thought of as having 100 different parallel economies in each iteration. We draw

new parameters after every 100 iterations for the first 40,000 iterations and after 10

iterations during the rest of the training. After drawing new parameters, we simulate

the economy for 100 periods to get a new draw for the state variable for each batch.

For iterations where we don’t draw new parameters, we simulate for 20 periods. The

expectations are evaluated using 100 draws.30

The NN convergence during the training is shown in Figure 11, where the mean

squared error averaged across the functions we minimize is shown. The shaded area

indicates the periods 10,000 to 15,000 in which we introduce the ZLB. We slowly scale

the impact of the ZLB using the following functional form:

Rt = max[RN
t , 1] + aZLB min[RN

t − 1, 0] (44)

The parameter aZLB is gradually lowered from 1 to 0 to move from the economy

without ZLB to the ZLB economy. The introduction of the ZLB complicates the

problem, as can be seen by the increase in the loss. At the end of the training, the

average mean squared error reaches a level of about 10−6.

NN particle filter. We generate 15,000 likelihoods with the particle filter to train

the NN-based particle filter. We use the RWMH algorithm to easily obtain 50,000

draws from the posterior distribution after a burn-in.

29The NN contains five hidden layers with 128 neurons each. The activation function for the
four initial hidden layers is the Sigmoid Linear Unit (SiLU), while the fifth layer is Leaky Rectified
Linear Unit (Leaky ReLU). The optimizer is AdamW. The learning rate follows a cosine annealing
scheduler starting from an initial rate of 1e− 3 and terminating at a rate of 1e− 7.

30Our algorithm follows the general setup that we have described in Section 2.
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Figure 11: Convergence of the NN solution. The figure shows the mean squared error
averaged across the two functions we minimize. The loss is calculated as a moving
average over 1000 iterations. The vertical axis has a logarithmic scale. The shaded
area indicates the period in which we introduce the ZLB.

Comparison. We compare the results to a state-of-the-art nonlinear estimation

approach that does not use machine learning techniques. The global solution method

is based on time iteration with piecewise linear policy functions as in Richter et al.

(2014), and the particle filter implementation follows Herbst and Schorfheide (2015).

When applying the alternative approach, we similarly use the nonlinear model as the

data-generating-process.31 However, this approach is much slower because we need to

resolve the model and run the particle filter for each draw. These limitations justify

our decision to use only 50,000 draws in the Metropolis-Hastings algorithm.

Results. The estimation results are summarized in Table 5. First, the NN approach

performs very well in recovering the true data-generating process. The posterior

median is close to the true value and always contained inside the 90% credible interval.

Furthermore, the posterior median and credible interval are very similar to those

obtained with the alternative method.

31We use the same sequence of structural shocks, measurement error shocks, and the true param-
eter values to generate the data. However, the solution of the model comes either from our neural
network or from the standard global method.
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D HANK model

The model is a nonlinear HANK model that includes both idiosyncratic and aggregate

risk. It incorporates two key features: households facing idiosyncratic income risk

and a borrowing limit; and the ZLB on the nominal interest rate, which constrains

monetary policy. Additionally, the model includes demand, supply, and monetary

policy shocks.

Households. The economy consists of a continuum of households. The households

choose consumption Ci
t , labor H

i
t , and assets Bi

t to maximize their utility:

E0

∑∞

t=0
βt exp(ζt)

[(
1

1− σ

)(
Ci

t

At

)1−σ

− χ

(
1

1 + η

)
(H i

t)
1+η

]
,

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1+

ϵζt . Ct is aggregate consumption and At is the total factor productivity. The budget

constraint in real terms can be written as:

Ci
t +Bi

t = τt

(
Wt

At

exp(sit)H
i
t

)1−γτ

+
Rt−1

Πt

Bi
t−1 +Divit, (45)

where Divit = Divt exp(s
i
t) is the household specific real dividends,Wt is real wage, Rt

is the gross nominal interest rate, and Πt is the gross inflation rate. The taxation is

progressive, which is governed by γτ and τt determines the level of the post-tax income.

The wage is divided by the productivity level to avoid a fiscal drag in taxation. The

agents individual labor productivity sit is stochastic and follows an AR(1) process:

sit = ρss
i
t−1 + ϵs,it . The dividend payout is scaled with the level of the idiosyncratic

shock. The agents face a borrowing limit B, which implies:

Bt ≥ B. (46)
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The first-order conditions can be written as

1 = βRtEt

[(
exp(ζt+1)

exp(ζt)

)(
λit+1

λit

)
1

Πt+1

]
+ µi

t, (47)

λit =

(
Ci

t

At

)−σ
1

At

, (48)

χ(H i
t)

η = (λit)

[
τt(1− γτ ) exp(s

i
t)
Wt

At

(
exp(sit)

Wt

At

H i
t

)−γτ
]
, (49)

where µi
t ≥ 0 is the normalized Lagrange multiplier on the individual borrowing limit

in equation (46).

Firms. The firm sector consists of a continuum of final goods producers and in-

termediate goods firms. The final goods retailers buy the intermediate goods and

transform them into the homogeneous final good using a CES production technology:

Yt =

(∫ 1

0

(Y j
t )

ϵ−1
ϵ dj

) ϵ
ϵ−1

, (50)

where Y j
t is the output of intermediate goods firm j. The equilibrium price of the

final good and the demand for the intermediate goods of firm j can be expressed as:

Pt =

(∫ 1

0

(P j
t )

1−ϵdj

) 1
1−ϵ

, Y j
t =

(
P j
t

Pt

)−ϵ

Yt. (51)

Intermediate goods producers are monopolistically competitive. The firm j uses

labor N j
t as input to produce output Y j

t with the following production technology:

Y j
t = AtN

j
t . (52)

Total factor productivity At follows a nonstationary process:

At = atAt−1, (53)
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where the trend growth rate follows an AR(1) process:

at = āexp(zt), (54)

zt = ρzzt−1 + ϵzt . (55)

Labor is hired in competitive markets so that the wage is given as follows:

Wt = AtMCt. (56)

The firm j sets the price of its goods to maximize its profit subject to the demand

curve for intermediate goods and Rotemberg adjustment costs for changing prices:

max
P j
t

P j
t

(
P j
t

Pt

)−ϵ
Yt
Pt

−MCt

(
P j
t

Pt

)−ϵ

Yt −
φ

2

(
P j
t

ΠP j
t−1

− 1

)2

Yt, (57)

where Π is the inflation target of the central bank. Imposing a symmetric equilibrium

and discounting future profits with the real interest rate, the New Keynesian Phillips

curve can be written as:[
φ

(
Πt

Π
− 1

)
Πt

Π

]
= (1−ϵ)+ϵMCt+βφEt

(
exp(ζt+1)

exp(ζt)

)(
λt+1

λt

)[(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt

]
,

(58)

where Πt = Pt/Pt−1 and λt = (Ct/At)
−σ At

−1. The Rotemberg adjustment costs are

ex-post given back. The real dividends of the firm sector can then be written as

Divt = Yt −WtNt. (59)

Policy makers. The central bank sets the nominal interest Rt using a Taylor rule

that responds to inflation and output deviations from their targets Π and Y . The

ZLB restricts the nominal interest rate. The rule is given as follows:

RN
t =

(
R

(
Πt

Π

)θΠ
(

Yt
AtY

)θY
)
exp(mpt), (60)
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Rt = max
[
1, RN

t

]
, (61)

where R and Y denote the deterministic steady state (DSS) values of the nominal

interest rate and output (in the detrended economy). While households face idiosyn-

cratic shocks in the deterministic steady state, the economy does not face and the

agents do not expect aggregate shocks. Additionally, there is also a persistent mone-

tary policy shock mpt to capture prolonged deviations from the rule:

mpt = ρmmpt−1 + ϵmt . (62)

The fiscal authority sets τt to keep their debts Dt on a constant path adjusted for

productivity gains:

Dt =
Rt−1

Πt

Dt−1 − Tt, (63)

Tt =

∫ (
Wt exp(s

i
t)H

i
t

)
di−

∫
τt

(
Wt

At

exp(sit)H
i
t

)1−γτ

di. (64)

Market clearing. Market clearing for the labor market, bond market, and goods

market requires

Nt =

∫
N j

t dj =

∫
exp(sit)H

i
tdi, (65)

Dt =

∫
Bi

tdi, (66)

Yt =

∫
Ci

tdi. (67)

D.1 Equilibrium conditions

To have stationarity, we need to define the variables as follows X̃t =
Xt

At
. The relevant

conditions can then be written as:

C̃i
t + B̃i

t = τ̃t

(
W̃t exp(s

i
t)H

i
t

)1−γτ
+
Rt−1

Πtat
B̃i

t−1 + D̃iv
i

t, (68)
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1 = βRtEt

[(
exp(ζt+1)

exp(ζt)

)(
C̃i

t

C̃i
t+1

)σ
1

Πt+1at+1

]
+ µi

t, (69)

χ(H i
t)

η =
(
C̃i

t

)−σ
[
τ̃t(1− γτ ) exp(s

i
t)W̃t

(
exp(sit)W̃tH

i
t

)−γτ
]
, (70)

Ỹt = Nt, (71)

W̃t =MCt, (72)

D̃ivt = Ỹt − W̃tỸt, (73)[
φ

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + βφEt

[(
exp(ζt+1)

exp(ζt)

)(
C̃t+1

C̃t

)−σ (
Πt+1

Π
− 1

)
Πt+1

Π

Ỹt+1

Ỹt

]
,

(74)

RN
t =

R(Πt

Π

)θΠ
(
Ỹt
Y

)θY
 exp(ϵmt ), (75)

Rt = max
[
1, RN

t

]
, (76)

D̃ =
Rt−1

Πtat
D̃ − T̃t, (77)

T̃t =

∫ (
W̃t exp(s

i
t)H

i
t

)
di−

∫
τ̃t

(
W̃t exp(s

i
t)H

i
t

)1−γτ
di (78)

Nt =

∫
exp(sit)H

i
tdi, (79)

D =

∫
B̃i

tdi, (80)

Ỹt =

∫
C̃i

tdi. (81)

E NN-based solution algorithm for HANK

The algorithm uses the outlined NN approach to solve the HANK model described

in the previous section over the parameter space.

The state variables and shocks of the HANK model are given as:

St =

{{
B̃i

t−1

}L

i=1
,
{
sit
}L
i=1

, RN
t−1, ζt, at, ϵ

m
t

}
, (82)
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νt =
{{
ϵs,it

}L
i=1

, ϵζt , ϵ
z
t , ϵ

m
t

}
. (83)

The parameters of the model are divided into calibrated (θ̄) and estimated ones (θ̃).

For instance, in the case of our application with US data, this yields:

Θ̄ = {β, η, σ, ā, χ, γτ ,Π, D, ρs, ρζ} , (84)

Θ̃ = {σs, B, φ, θΠ, θY , ρz, ρm, σζ , σz, σm} . (85)

We use two NNs to separate between individual and aggregate policy functions. The

individual NN ψI
NN(·) solves for labor supply:{(

H i
t

)
= ψI

NN

(
Si
t, St, Θ̃|Θ̄

)}L

i=1
, (86)

where Si
t =

{
B̃i

t−1, s
i
t

}
. The NN for the aggregate policy functions ψA

NN(·) determines

the wage and inflation:Πt

W̃t

 = ψA
NN

(
St, Θ̃|Θ̄

)
. (87)

One challenge is that we must solve for the deterministic steady state values of

the nominal rate and output, as the Taylor rule depends on them. To focus on the

algorithm for the moment, let’s assume that we have already trained a NN ψSS
NN(·)

that maps the parameter values to the deterministic steady state values:R
Ỹ

 = ψSS
NN

(
Θ̃|Θ̄

)
. (88)

The training of the above NN precedes the training of other NNs approximating the

individual and aggregate policy functions. The procedure is described in Section E.1

and adapts the below algorithm to a version of the model without aggregate risk (a

Bewley-Huggett-Aiyagari type model). The steps of the algorithm are as follows:

1. Set up the NNs to approximate the policy functions and initialize their weights:
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The NN ψI
NN

(
Si
t,St, Θ̃|Θ̄

)
for the individual policy functions

{(
H i

t

)
= ψI

NN

(
Si
t, St, Θ̃|Θ̄

)}L

i=1
. (89)

The NN ψA
NN

(
St, Θ̃|Θ̄

)
for the aggregate policy functions:

Πt

W̃t

 = ψA
NN

(
St, Θ̃|Θ̄

)
. (90)

2. Solve for all time t variables for a given state vector of batch b. From the NN,

we have a current guess for the policy functions:

{H i
t}Li=1,Πt, W̃t, (91)

and the deterministic steady state values of R and Ỹ are given by equation (88).

The next step is to calculate the following (aggregate) variables:

at = āexp(zt), (92)

Nt =

(
1

L

L∑
i=1

H i
t exp(s

i
t)

)
, (93)

Ỹt = Nt, (94)

T̃t =

(
Rt−1

Πtat
− 1

)
D, (95)

τ̃t =

1
L

∑L
i=1

(
W̃t exp(s

i
t)H

i
t

)
− T̃t

1
L

∑L
i=1

(
W̃t exp(sit)H

i
t

)1−γτ
, (96)

MCt = W̃t. (97)

Then, we can calculate the nominal interest rate, where we impose the ZLB:

RN
t = R

(
Πt

Π

)θΠ
(
Ỹt

Ỹ

)θY

exp(ϵmt ), (98)
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Rt = max
[
1, RN

t

]
. (99)

After that, we calculate each household’s individual variables:C̃i
t =

 τ̃t(1− γτ ) exp(s
i
t)W̃t

(
exp(sit)W̃tH

i
t

)−γτ

χ(H i
t)

η


1/σ


L

i=1

, (100)

{
D̃iv

i

t =
(
Ỹt − W̃tNt

)
exp(sit)

}L

i=1
, (101){

ω̃i
t = τ̃t

(
W̃t exp(s

i
t)H

i
t

)1−γτ
+
Rt−1

Πtat
B̃i

t−1 + D̃iv
i

t

}L

i=1

, (102){
B̃i

t = ω̃i
t − C̃i

t

}L

i=1
. (103)

Aggregate consumption is:

C̃t =
1

L

L∑
i=1

C̃i
t . (104)

We use a Monte Carlo approach to evaluate the expectations. We randomly

draw M sets of next period shocks to evaluate the expectations. We use the

antithetic variate method to increase the precision and reduce the number of

necessary draws. The antithetic variates technique creates to a given path

{ν1, ν2, ν3, . . . , νM/2} also its antithetic path {−ν1,−ν2,−ν3, . . . ,−νM/2}. The

drawn shocks are given as:{{
ϵs,i,mt+1

}L
i=1

, ϵζ,mt+1, ϵ
z,m
t+1, ϵ

m,m
t+1

}M

m=1
, (105)

where the last superscript m indicates which shock draw the next period value

is associated with. Note that, with a slight abuse of notation, we also use the

superscript m, in the first position, to denote the monetary policy shock ϵmt .

We then proceed to calculate the next period values of the stochastic state
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variables for all M draws, that is:{{
si,mt+1 = ρss

i
t + ϵs,i,mt+1

}L
i=1

}M

m=1
, (106){

ζmt+1 = ρζζt + ϵζ,mt+1

}M

m=1
, (107){

zmt+1 = ρzzt + ϵz,mt+1

}M
m=1

, (108)

which then gives us the state variables for all M shock draws.

We can then use the NNs for the individual and aggregate policy functions to

calculate the individual and aggregate control variables:{{(
H i,m

t+1

)
= ψI

NN

(
Si,m
t+1,Sm

t+1, Θ̃|Θ̄
)}L

i=1

}M

m=1

, (109)
Πm

t+1

W̃m
t+1

 = ψA
NN

(
Sm
t+1, Θ̃|Θ̄

)
M

m=1

. (110)

The next step is to calculate the following (aggregate) variables for the period

t+ 1 for all M draws:

{
amt+1 = āexp(zmt+1)

}M
m=1

, (111){
Nm

t+1 =

(
1

L

L∑
i=1

H i,m
t+1 exp(s

i,m
t+1)

)}M

m=1

, (112){
Ỹ m
t+1 = Nm

t+1

}M

m=1
, (113){

T̃m
t+1 =

(
Rt

Πm
t+1a

m
t+1

− 1

)
D

}M

m=1

, (114)τ̃mt+1 =

1
L

∑L
i=1

(
W̃m

t+1 exp(s
i,m
t+1)H

i,m
t+1

)
− T̃m

t+1

1
L

∑L
i=1

(
W̃m

t+1 exp(s
i,m
t+1)H

i,m
t+1

)1−γτ


M

m=1

. (115)

We proceed with calculating for each household their individual variables in
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period t+ 1 for all M draws:
C̃i,m

t+1 =

 τ̃mt+1(1− γτ ) exp(s
i,m
t+1)W̃

m
t+1

(
exp(si,mt+1)W̃

m
t+1H

i,m
t+1

)−γτ

χ(H i,m
t+1)

η


1/σ


L

i=1


M

m=1

,

(116){{
D̃iv

i,m

t+1 =
(
Ỹ m
t+1 − W̃m

t+1N
m
t+1

)
exp(si,mt+1)

}L

i=1

}M

m=1

, (117){{
ω̃i,m
t+1 = τ̃mt+1

(
W̃m

t+1 exp(s
i,m
t+1)H

i,m
t+1

)1−γτ
+

Rt

Πm
t+1a

m
t+1

B̃i
t + D̃iv

i,m

t+1

}L

i=1

}M

m=1

,

(118){{
B̃i,m

t+1 = ω̃i,m
t+1 − C̃i,m

t+1

}L

i=1

}M

m=1

. (119)

Aggregate consumption is given as:{
C̃m

t+1 =
1

L

L∑
i=1

C̃i,m
t+1

}M

m=1

. (120)

We need to ensure that the borrowing constraints for households Bi
t ≥ B are

satisfied (see also equation (46)).32 It is convenient to define λ̄it as follows:

λ̄it = 1− µi
t. (121)

We calculate the multiplier for all agents L using their Euler equation:{
λ̄it = βRt

1

M

M∑
m=1

[(
exp(ζmt+1)

exp(ζt)

)(
C̃i

t

C̃i,m
t+1

)σ
1

Πm
t+1a

m
t+1

]}L

i=1

, (122)

where we can now evaluate the expectations by taking the mean of theM draws.

Equipped with this object, we use the Fischer-Burmeister function ΨFB, a

smooth way of representing the Kuhn-Tucker conditions, to ensure that these

32The Kuhn-Tucker conditions can be written as µi
t ≥ 0,

(
B̃i

t −B
)
≥ 0, µi

t ×
(
B̃i

t −B
)
= 0.
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conditions hold.33 This can be written as

ΨFB
(
1− λ̄it, B̃

i
t −B

)
. (123)

We can now calculate the error associated with the Fisher-Burmeister function:{
L1,i =

(
ΨFB

(
1− λ̄it, B̃

i
t −B

))2}L

i=1

, (124)

where L1,i is the squared error of agent i.

We also calculate the squared error for the New Keynesian Phillips curve, the

resource constraint in period t and t + 1, and market clearing for the bond in

period t and t+ 1:

L2 =

([
φ

(
Πt

Π
− 1

)
Πt

Π

]
− (1− ϵ)− ϵMCt

−βφ 1

M

M∑
m=1

[(
exp(ζmt+1)

exp(ζt)

)(
C̃m

t+1

C̃t

)−σ (
Πm

t+1

Π
− 1

)
Πm

t+1

Π

Ỹ m
t+1

Ỹt

])2

,

(125)

L3 =

(
D − 1

L

L∑
i=1

Bi
t

)2

, (126)

L4 =
1

M

M∑
m=1

(
D − 1

L

L∑
i=1

Bi,m
t+1

)2

, (127)

L5 =
(
Ỹt − C̃t

)2
, (128)

L6 =
1

M

M∑
m=1

(
Ỹ m
t+1 − C̃m

t+1

)2
. (129)

3. Repeat step 2 for each element in a batch B, which gives the following loss

33The Kuhn-Tucker conditions can be written as: e ≥ 0, f ≥ 0, e×f = 0. The Fischer-Burmeister
function representing them is defined as: ΨFB (e, f) = e+f−

√
e2 + f2. The conditions are satisfied

when ΨFB (e, f) = 0.
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components:{{
L1,i,b

}L
i=1

, L2,b, L3,b, L4,b, L5,b, L6,b
}B

b=1
. (130)

4. Define the loss function:

ϕL =
1

B

B∑
b=1

[
L∑
i=1

αi
1L

1,i,b
1 + α2L

2,b + α3L
3,b + α4L

4,b + α5L
5,b + α6L

6,b

]
,

(131)

where {αi
1}

L
i=1 , α2, α3, α4, α5, α6 determine the weights for the different equa-

tions.

5. Optimize the parameters of the NNs ψI
NN and ψA

NN to minimize the loss function

ϕL with a stochastic gradient decent based optimizer.

6. Steps 2 - 5 are repeated N int times to take several optimization steps. Redraw

the shock realization in period t+ 1 for each internal optimization step.

7. Draw new parameters for each economy in the batch. This step is not required

at each iteration.

8. Simulate each economy for T sim periods using randomly drawn shocks. This

creates then the state vector for the next iteration of the optimizer.

9. Steps 2 - 8 are repeated N iter times until the NN converges on average to

sufficiently low loss.

E.1 Deterministic steady state and neural network

We need the mapping from the parameters to the deterministic steady state values of

the interest rate R and detrended output Ỹ , as these objects enter the Taylor rule. To

obtain this mapping, we solve for the deterministic steady state (DSS) of our HANK
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model, in which agents face and experience idiosyncratic risk while aggregate risk is

absent.

The DSS NN solves for the deterministic steady state values:R
Ỹ

 = ψSS
NN

(
Θ̃|Θ̄

)
. (132)

To solve for this NN, we also need to solve for the individual policy functions of the

agents in the DSS.{(
H i

t

)
= ψI,DSS

NN

(
Si
t,S, Θ̃|Θ̄

)}L

i=1
, (133)

where DSS enters the superscript of the NN for a clear distinction. Note that we let

the deterministic steady state values of the aggregate state variables still enter this

network. While this is unnecessary for solving for the DSS, it allows us to use this

trained NN as a starting point when we solve for the economy with aggregate risk.

1. Set up the NNs to approximate the policy functions and initialize their weights:

The NN ψSS
NN

(
Θ̃|Θ̄

)
for the steady state parameters:

R
Ỹ

 = ψSS
NN

(
Θ̃|Θ̄

)
. (134)

The NN ψI,DSS
NN

(
Si
t,S, Θ̃|Θ̄

)
for the individual policy functions without

aggregate risk:{(
H i

t

)
= ψI,DSS

NN

(
Si
t,S, Θ̃|Θ̄

)}L

i=1
. (135)

2. Solve for all the current period individual variables. From the NN, we get a
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current guess for the deterministic steady state valuesR
Ỹ

 = ψSS
NN

(
Θ̃|Θ̄

)
, (136)

and individual policy functions

{H i
t}Li=1. (137)

Note that inflation is at target in the DSS, the wage equals its value in the DSS

without idiosyncratic risk, and the growth rate is at its mean. Thus, we know:

Π, W̃ , g. (138)

The next step is to calculate the following variables:

Nt =

(
1

L

L∑
i=1

H i
t exp(s

i
t)

)
, (139)

Ỹt = Nt, (140)

T̃ =

(
R

Πg
− 1

)
D, (141)

τ̃t =

1
L

∑L
i=1

(
W̃ exp(sit)H

i
t

)
− T̃

1
L

∑L
i=1

(
W̃ exp(sit)H

i
t

)1−γτ
, (142)

MC = W̃ . (143)

Note that we use a subscript t here to indicate variables calculated based on

individual shock realizations. We assume that L is sufficiently large so that

specific shock realizations and asset level of households do not affect the steady

state value.34 Once the network successfully approximates the DSS, aggregate

variables such as (detrended) output are the same in each period, e.g. Ỹt ≈ Ỹ ,∀t
34Furthermore, the stochastic setup of the NN allows us to average over several hundred thousands

of draws as we consider in each iteration different draws for the batch B.
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We pursue calculating each household’s individual variables:C̃i
t =

 τ̃t(1− γτ ) exp(s
i
t)W̃

(
exp(sit)W̃H i

t

)−γτ

χ(H i
t)

η


1/σ


L

i=1

, (144)

{
D̃iv

i

t =
(
Ỹt − W̃Nt

)
exp(sit)

}L

i=1
, (145){

ω̃i
t = τ̃t

(
W̃ exp(sit)H

i
t

)1−γτ
+

R

Πg
B̃i

t−1 + D̃iv
i

t

}L

i=1

, (146){
B̃i

t = ω̃i
t − C̃i

t

}L

i=1
. (147)

Aggregate consumption is given as:

C̃t =
1

L

L∑
i=1

C̃i
t . (148)

We use a Monte Carlo approach to evaluate the expectations, which requires

randomly drawing M sets of next period shocks for the households (we also use

the antithetic variate method here). The drawn shocks are given as:{{
ϵs,i,mt+1

}L
i=1

}M

m=1
, (149)

where the superscript m indicates which shock draw the next period value is

associated with.

We then proceed to calculate the next period values of the stochastic state

variables for all M draws, that is:{{
si,mt+1 = ρss

i
t + ϵs,i,mt+1

}L
i=1

}M

m=1
. (150)

This gives us the household state variables for all M shock draws.
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We can then use the NN for the individual policy functions in the DSS:{{(
H i,m

t+1

)
= ψI,DSS

NN

(
Si,m
t+1, Sm, Θ̃|Θ̄

)}L

i=1

}M

m=1

. (151)

The next step is to calculate the following variables for the period t+ 1 for all

M draws:{
Nm

t+1 =

(
1

L

L∑
i=1

H i,m
t+1 exp(s

i,m
t+1)

)}M

m=1

, (152){
Ỹ m
t+1 = Nm

t+1

}M

m=1
, (153)τ̃mt+1 =

1
L

∑L
i=1

(
W̃ exp(si,mt+1)H

i,m
t+1

)
− T̃

1
L

∑L
i=1

(
W̃ exp(si,mt+1)H

i,m
t+1

)1−γτ


M

m=1

. (154)

We proceed to calculate each household’s individual variables for the period

t+ 1 across all M draws:
C̃i,m

t+1 =

 τ̃mt+1(1− γτ ) exp(s
i,m
t+1)W̃

(
exp(si,mt+1)W̃H i,m

t+1

)−γτ

χ(H i,m
t+1)

η


1/σ


L

i=1


M

m=1

,

(155){{
D̃iv

i,m

t+1 =
(
Ỹ m
t+1 − W̃Nm

t+1

)
exp(si,mt+1)

}L

i=1

}M

m=1

, (156){{
ω̃i,m
t+1 = τ̃mt+1

(
W̃ exp(si,mt+1)H

i,m
t+1

)1−γτ
+

R

Πg
B̃i

t + D̃iv
i,m

t+1

}L

i=1

}M

m=1

,

(157){{
B̃i,m

t+1 = ω̃i,m
t+1 − C̃i,m

t+1

}L

i=1

}M

m=1

. (158)

Aggregate consumption is given as:{
C̃m

t+1 =
1

L

L∑
i=1

C̃i,m
t+1

}M

m=1

. (159)
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We need to ensure that the borrowing constraint of the households Bi
t ≥ B is

satisfied. It is convenient to define λ̄it as follows:

λ̄it = 1− µi
t. (160)

We calculate the multiplier for all agents L using their Euler equation:{
λ̄it = βR

1

M

M∑
m=1

[(
C̃i

t

C̃i,m
t+1

)σ
1

Πg

]}L

i=1

, (161)

where we can now evaluate the expectations by taking the mean over the M

draws.

Equipped with this object, we use the Fischer-Burmeister function ΨFB to en-

force the Kuhn-Tucker conditions again. This can be written as:

ΨFB
(
1− λ̄it, B̃

i
t −B

)
. (162)

We can now calculate the error associated with the Fischer-Burmeister function:{
L1,DSS,i =

(
ΨFB

(
1− λ̄it, B̃

i
t −B

))2}L

i=1

, (163)

where L1,DSS,i is the squared Euler error of agent i.

We also calculate the squared error for aggregate output, the resource constraint

in period t and t+ 1, and market clearing for the bond in period t and t+ 1:

L2,DSS =
(
Ỹt − Ỹ

)2
,

L3,DSS =

(
D − 1

L

L∑
i=1

Bi
t

)2

, (164)

L4,DSS =
1

M

M∑
m=1

(
D − 1

L

L∑
i=1

Bi,m
t+1

)2

, (165)

L5,DSS =
(
Ỹt − C̃t

)2
, (166)
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L6,DSS =
1

M

M∑
m=1

(
Ỹ m
t+1 − C̃m

t+1

)2
. (167)

3. Repeat step 2 for each element in a batch B, which gives the following loss

components for the entire batch:{{
L1,DSS,i,b

}L
i=1

, L2,DSS,b, L3,DSS,b, L4,DSS,b, L5,DSS,b, L6,DSS,b
}B

b=1
. (168)

4. Define the loss function:

ϕL =
1

B

B∑
b=1

[
L∑
i=1

αi,DSS
1 L1,DSS,i,b

1 +
6∑

j=2

αDSS
j Lj,DSS,b

]
, (169)

where the weights for the equations are determined by
{
αi,DSS
1

}L

i=1
and

αDSS
j ,∀j = 2, 3, 4, 5, 6.

5. Optimize the parameters of the NNs ψSS
NN and ψI,DSS

NN to minimize the loss

function ϕL with a stochastic gradient decent based optimizer.

6. Steps 2 - 5 are repeated N int times to take several optimization steps. Redraw

the shock realization in period t+ 1 for each internal optimization step.

7. Draw new parameters for each economy in the batch. This step is not required

at each iteration.

8. Simulate each economy for T sim periods using randomly drawn shocks. This

creates the state vector for the next iteration of the optimizer.

9. Steps 2 - 8 are repeated N iter times until the NN converges on average to

sufficiently low loss.
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Figure 12: Convergence of the NN solution for the DSS of the HANK model. The
figure shows the dynamics of the mean squared error, which is averaged across the
equations that we minimize, associated with the deterministic steady state values of
the nominal rate R and output Y . The vertical axis has a logarithmic scale.

E.2 Training of the neural networks and mean squared error

We are training our NN based model solution over the extended parameter space in

two steps. The details of the training process and the mean squared error are shown.

Training of the DSS neural network. The NN to approximate output and nomi-

nal rate in the DSS is trained for 10,000 iterations. We conduct 15 optimization steps

during each iteration step, including redrawing of the shocks, and use 100 Monte

Carlo draws. After each iteration, the economy is simulated for 20 periods. The

parameters are redrawn after every 40 iterations and are initialized with a longer

simulation of 200 periods. Note that this step also requires training a temporary

individual policy function, which provides the decision of households in the DSS. The

convergence of the NN is shown in Figure 12, where the mean squared error averaged

across the equations that we minimize is shown. At the end of the training, the NN

approximates the DSS with a very high accuracy.
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Figure 13: Convergence of the NN solution for the HANK model. The figure shows the
dynamics of the mean squared error during the training of the extended individual
and aggregate policy functions. The shaded areas indicate the periods in which we
introduce aggregate risk and the ZLB. The vertical axis has a logarithmic scale.

Training of extended policy functions. We use 30,000 iterations to jointly train

the NNs to approximate the extended individual and aggregate policy functions.

We conduct 15 optimization steps during each iteration step, including redrawing

of the shocks, and use 100 Monte Carlo draws. After each iteration, the economy

is simulated for 20 periods. The parameters are redrawn after every 40 iterations

and are initialized with a longer simulation of 200 period.35 Figure 13 shows that

the loss converges to an error in the magnitude of 10e-6. For better convergence,

we slowly introduce aggregate risk between periods 1000 and 2000 by scaling the

standard deviations of the aggregate shocks from a tiny value to the actual values.

Similarly, we introduce the ZLB between periods 5000 and 1000 by slowly scaling the

impact of the ZLB. In particular, we use the following functional form:

Rt = max[RN
t , 1] + aZLB min[RN

t − 1, 0]. (170)

35During the first 1000 iterations, we have a shorter simulation horizon of 10 periods and 100
periods if parameters are redrawn.
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The parameter aZLB is stepwise lowered from 1 to 0 to move from the economy

without ZLB to the ZLB economy.
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