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Motivation

Challenges in Bayesian Estimation of Complex Models

• Time-consuming process limits empirical exploration and usefulness.
• Restricts the estimation of certain parameters, particularly those requiring
the resolution of the model’s steady state and the recalculation of Jacobians.

Combining innovations to speed things up

• Approximate Posterior: Utilize a DNN to approximate the true posterior.
• Efficient Training Data: Employ a (parallel) Metropolis-Hastings algorithm to
generate training data and explore relevant regions of the parameter space.

• Waste Recycling: Use all generated draws.
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🍦 Metropolis-Hastings

Objective: Sample from a target distribution π(x) when direct sampling is difficult.

Steps:

1. Initialization: Choose an initial value x0, number of samples T set t = 0.
2. Proposal: Generate a candidate x∗ from a proposal distribution q(x∗|xt).
3. Acceptance Criterion:

• Compute the acceptance probability:

α = min

(
1, π(x

∗)q(xt|x∗)

π(xt)q(x∗|xt)

)
• Accept or reject the candidate:

• Accept x∗ with probability α: set xt+1 ← x∗.
• Otherwise, set xt+1 ← xt .

4. Iterate: Increment t and repeat from Step 2 until t = T
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You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again

Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?
Solution: Use the Metropolis-Hastings algorithm

• Problem: Only 20-30% of the proposals end up being accepted
Solution: We can use both rejected and accepted candidates as training data
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Simple HANK: Environment

Model:

• One asset HANK model with sticky wages, three aggregate shocks
• Solved using Sequence-Space Jacobian toolkit (Auclert et al. 2021)

• Computing the steady state and household Jacobians takes 1.0s
• Soving the model and computing the log-likelihood takes 0.7s

Estimation:

• US data from 1966 to 2019
• Three time-series: GDP growth, GDP deflator, Fed funds rate

• Estimate 11 parameters
• Metropolis-Hastings + Deep learning
• Multi-proposal Metropolis-Hastings + Deep learning
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Metropolis-Hastings + Deep Learning

Steps:

1. Find posterior mode using a solver
2. Sample from the posterior using the Metropolis-Hastings

• Store candidates x∗
i and log-posteriors log π(x∗

i ), i = 1, 2, ...,N
3. Shuffle and split into training and validation samples
4. Train a deep neural network to approximate log π̂(x∗) = ΨDNN (x∗)

• Supervised training to minimize loss L = 1
B
∑B

i=1 (log π(xi)− log π̂(xi))
2

• Fully connected feed-forward neural network
• 3 hidden layers, 128 neurons each, CELU activation function

• trained for 1000 epochs, B = 100
• AdamW and cosine annealing learning rate scheduler

5. Sample from posterior using Metropolis-Hastings and ΨDNN (x)
• Very fast sampling at a rate of 10 000 it/second
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Approximate Posterior ΨDNN (x)
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Figure 1: True and approximate log posterior for different parameters
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Comparing posterior distributions
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Figure 2: True and approximate posterior distributions for different parameters
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How much faster?

• Standard Metropolis-Hastings for 200 000 samples: 39h

• Generating training data 50 000 samples: ~9h 45min
• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Saved about 29 hours!

• Virtually identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.38%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~20h
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Parallel Multi-proposal Metropolis-Hastings + Deep Learning

🗽 Free to choose the flavor of Metropolis-Hastings.

• Standard Metropolis-Hastings: 39h
• Multi-proposal Metropolis-Hastings (Calderhead 2014 or Schwedes et al. 2021)

• 64 CPU (AMD EPYC 7V12): 1h 57min
• Macbook M1 Pro (6P+2E): 7h

The main idea of the multi-proposal algorithms:

• Generate multiple candidates x∗
i where i = 1, 2, ...,Np

• In parallel compute π(x∗
i ) for i = 1, 2, ...,Np

a. Either construct a transition matrix and simulate a Markov chain for Ndraws

b. Construct a distribution
(

π(x∗
1 )∑Np

i=1(π(x∗
i )
, ...,

π(x∗
Np )∑Np

i=1(π(x∗
i )

)
to sample (x∗

1 , ..., x∗
Np

)
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Sample generated by the multi-proposal Metropolis-Hastings algorithm
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Figure 3: Distribution of proposed and accepted draws from the multi-proposal
Metropolis-Hastings algorithm 10



Multi-proposal Metropolis-Hastings + Deep Learning

Steps:

1. Find posterior mode using a solver
2. Sample from the posterior using the multi-proposal Metropolis-Hastings

• Store candidates xi and posterior density π(xi), i = 1, 2, ...,N
• Drop 20% of candidates with low posterior density

• Some candidates have a very low likelihood
• Leaving them out compresses the range of values and eases training
• Wouldn’t matter for the final posterior distribution

3. Shuffle and split into training and validation samples
4. Train a deep neural network to approximate log π̂(x) = ΨDNN (x)

• Same configuration as before...
5. Sample from posterior using Metropolis-Hastings and ΨDNN (x)

• Very fast sampling at a rate of 10 000 it/second
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Approximate Posterior ΨDNN (x)
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Figure 4: True and approximate log posterior for different parameters
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Comparing posterior distributions
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Figure 5: True and approximate posterior distributions for different parameters
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More speed! 🏎️

• Generating training data 50 000 samples:
• On a laptop: ~1h 45min
• On a 64 core server CPU: ~29min

• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Estimate a simple HANK in 40min (or 2h on a laptop)!

• Almost identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.33%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~1.5h
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Conclusion

By combining these innovations

• Approximate Posterior: Utilize a DNN to approximate the true posterior.
• Efficient Training Data: Employ a (parallel) Metropolis-Hastings algorithm to
generate training data and explore relevant regions of the parameter space.

• Waste Recycling: Use all generated draws.

We can speed up the estimation of complex macroeconomic models
significantly!

• Future directions:
• Applications: Quantitative HANK, forecasting
• Approximate household Jacobians?
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Thank you!
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Neural Network

• Single neuron i in layer l with width Hl and activation function σ:

x l
i = σ

∑
j

W l
ijx l−1

j + bl
i

 , 1 ≤ i ≤ Hl , 1 ≤ j ≤ Hl−1

• Single layer:

xl = σ
(
Al(xl−1)

)
, Al

(
xl−1

)
= Wlxl−1 + bl

• The entire network with L hidden layers:

ψ(x) =
(
AL+1 ◦ σ ◦ AL ◦ σ ◦ AL−1 ◦ ... ◦ σ ◦ A1) (x)

• Weights and biases of the network:

θ = {Wl , bl}L+1
l=1
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Training a Neural Network

• Suppose we want to approximate f : x 7→ y using our neural network ψ(x; θ)
• We have a dataset of pairwise samples S = {(xi , yi) : 1 ≤ i ≤ N}
• Training is adjusting θ so that ψ(x, θ) starts approximating f:

θ∗ = argmin
θ

L(θ), where L(θ) = 1
N

N∑
i=1

(yi − ψ(x; θ))

• Usually done using (some variation of) gradient descent algorithm:

θk+1 = θk − η
∂L
∂θ

(θk)

• Where η is the learning rate
• The gradients are efficiently calculated using the backpropagation algorithm
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