
Sequence-Space Jacobian meets Deep Learning:
Exploiting the Random Walk for HANK

Hanno Kase1, Rodolfo Rigato1, Matthias Rottner3

SEM, August 2, 2024

1European Central Bank
2Bank for International Settlements, Deutsche Bundesbank

The views in this presentation are solely those of the authors and should not be interpreted as re-
flecting the views of the Bank for International Settlements, the Deutsche Bundesbank, the European
Central Bank, or the Eurosystem.



Motivation

Challenges in Bayesian Estimation of Complex Models

• Time-consuming process limits empirical exploration and usefulness.
• Restricts the estimation of certain parameters, particularly those requiring
the resolution of the model’s steady state and the recalculation of Jacobians.

Combining innovations to speed things up

• Approximate Posterior: Utilize a DNN to approximate the true posterior.
• Efficient Training Data: Employ a (parallel) Metropolis-Hastings algorithm to
generate training data and explore relevant regions of the parameter space.

• Waste Recycling: Use all generated draws.

1



🍦 Metropolis-Hastings

Objective: Sample from a target distribution π(x) when direct sampling is difficult.

Steps:

1. Initialization: Choose an initial value x0, number of samples T set t = 0.
2. Proposal: Generate a candidate x∗ from a proposal distribution q(x∗|xt).
3. Acceptance Criterion:

• Compute the acceptance probability:

α = min

(
1, π(x

∗)q(xt|x∗)

π(xt)q(x∗|xt)

)
• Accept or reject the candidate:

• Accept x∗ with probability α: set xt+1 ← x∗.
• Otherwise, set xt+1 ← xt .

4. Iterate: Increment t and repeat from Step 2 until t = T

2



You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again

Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?
Solution: Use the Metropolis-Hastings algorithm

• Problem: Only 20-30% of the proposals end up being accepted
Solution: We can use both rejected and accepted candidates as training data

3



You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again
Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?
Solution: Use the Metropolis-Hastings algorithm

• Problem: Only 20-30% of the proposals end up being accepted
Solution: We can use both rejected and accepted candidates as training data

3



You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again
Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?

Solution: Use the Metropolis-Hastings algorithm
• Problem: Only 20-30% of the proposals end up being accepted
Solution: We can use both rejected and accepted candidates as training data

3



You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again
Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?
Solution: Use the Metropolis-Hastings algorithm

• Problem: Only 20-30% of the proposals end up being accepted
Solution: We can use both rejected and accepted candidates as training data

3



You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again
Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?
Solution: Use the Metropolis-Hastings algorithm

• Problem: Only 20-30% of the proposals end up being accepted

Solution: We can use both rejected and accepted candidates as training data

3



You CAN have your π(x) and eat it!

• Problem: To compute π(x∗) we usually need to solve the model again
Solution: We can use a deep neural network to approximate π(x∗)

• Problem: How to create the training data?
Solution: Use the Metropolis-Hastings algorithm

• Problem: Only 20-30% of the proposals end up being accepted
Solution: We can use both rejected and accepted candidates as training data

3



Simple HANK: Environment

Model:

• One asset HANK model with sticky wages, three aggregate shocks
• Solved using Sequence-Space Jacobian toolkit (Auclert et al. 2021)

• Computing the steady state and household Jacobians takes 1.0s
• Soving the model and computing the log-likelihood takes 0.7s

Estimation:

• US data from 1966 to 2019
• Three time-series: GDP growth, GDP deflator, Fed funds rate

• Estimate 11 parameters
• Metropolis-Hastings + Deep learning
• Multi-proposal Metropolis-Hastings + Deep learning

4



Metropolis-Hastings + Deep Learning

Steps:

1. Find posterior mode using a solver
2. Sample from the posterior using the Metropolis-Hastings

• Store candidates x∗
i and log-posteriors log π(x∗

i ), i = 1, 2, ...,N
3. Shuffle and split into training and validation samples
4. Train a deep neural network to approximate log π̂(x∗) = ΨDNN (x∗)

• Supervised training to minimize loss L = 1
B
∑B

i=1 (log π(xi)− log π̂(xi))
2

• Fully connected feed-forward neural network
• 3 hidden layers, 128 neurons each, CELU activation function

• trained for 1000 epochs, B = 100
• AdamW and cosine annealing learning rate scheduler

5. Sample from posterior using Metropolis-Hastings and ΨDNN (x)
• Very fast sampling at a rate of 10 000 it/second

5



Approximate Posterior ΨDNN (x)

0.72 0.74 0.76 0.78
theta

730

720

710

0.05 0.10 0.15 0.20
iota

710.0

707.5

705.0

702.5

0.30 0.35 0.40 0.45
phi_i

720

710

1.9 2.0 2.1 2.2 2.3
phi_pi

710.0

707.5

705.0

702.5

0.10 0.15 0.20
eta_B

707.5

705.0

702.5

700.0

0.975 0.980 0.985
rho_p

710.0

707.5

705.0

702.5

0.40 0.45 0.50
rho_i

710.0

707.5

705.0

702.5

0.86 0.88 0.90
rho_C

710.0

707.5

705.0

702.5

0.25 0.30 0.35 0.40
sig_p

740

720

0.425 0.450 0.475 0.500
sig_i

710.0

707.5

705.0

702.5

0.22 0.24 0.26 0.28
sig_C

715

710

705

Neural Network
Ground Truth

Figure 1: True and approximate log posterior for different parameters
6



Comparing posterior distributions

0.60 0.65 0.70 0.75 0.80 0.85
theta

0

5

10

15

0.0 0.2 0.4 0.6
iota

0

2

4

6

0.1 0.2 0.3 0.4 0.5 0.6
phi_i

0

2

4

1.50 1.75 2.00 2.25 2.50 2.75
phi_pi

0

1

2

0.1 0.2 0.3
eta_B

0.0

2.5

5.0

7.5

0.96 0.97 0.98 0.99
rho_p

0

25

50

75

0.2 0.3 0.4 0.5 0.6
rho_i

0

2

4

6

0.80 0.85 0.90 0.95
rho_C

0

10

20

0.2 0.4 0.6 0.8
sig_p

0

2

4

6

0.4 0.5 0.6
sig_i

0

5

10

0.15 0.20 0.25 0.30 0.35
sig_C

0

5

10

15 Ground Truth
Approximate Posterior

Figure 2: True and approximate posterior distributions for different parameters
7



How much faster?

• Standard Metropolis-Hastings for 200 000 samples: 39h

• Generating training data 50 000 samples: ~9h 45min
• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Saved about 29 hours!

• Virtually identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.38%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~20h

8



How much faster?

• Standard Metropolis-Hastings for 200 000 samples: 39h
• Generating training data 50 000 samples: ~9h 45min
• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Saved about 29 hours!

• Virtually identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.38%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~20h

8



How much faster?

• Standard Metropolis-Hastings for 200 000 samples: 39h
• Generating training data 50 000 samples: ~9h 45min
• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Saved about 29 hours!

• Virtually identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.38%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~20h

8



How much faster?

• Standard Metropolis-Hastings for 200 000 samples: 39h
• Generating training data 50 000 samples: ~9h 45min
• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Saved about 29 hours!

• Virtually identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.38%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~20h

8



How much faster?

• Standard Metropolis-Hastings for 200 000 samples: 39h
• Generating training data 50 000 samples: ~9h 45min
• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Saved about 29 hours!

• Virtually identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.38%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~20h

8



Parallel Multi-proposal Metropolis-Hastings + Deep Learning

🗽 Free to choose the flavor of Metropolis-Hastings.

• Standard Metropolis-Hastings: 39h
• Multi-proposal Metropolis-Hastings (Calderhead 2014 or Schwedes et al. 2021)

• 64 CPU (AMD EPYC 7V12): 1h 57min
• Macbook M1 Pro (6P+2E): 7h

The main idea of the multi-proposal algorithms:

• Generate multiple candidates x∗
i where i = 1, 2, ...,Np

• In parallel compute π(x∗
i ) for i = 1, 2, ...,Np

a. Either construct a transition matrix and simulate a Markov chain for Ndraws

b. Construct a distribution
(

π(x∗
1 )∑Np

i=1(π(x∗
i )
, ...,

π(x∗
Np )∑Np

i=1(π(x∗
i )

)
to sample (x∗

1 , ..., x∗
Np

)

9



Sample generated by the multi-proposal Metropolis-Hastings algorithm

0.6 0.7 0.8
theta

0

5

10

15

0.0 0.2 0.4
iota

0

2

4

6

0.2 0.4 0.6
phi_i

0

2

4

1.5 2.0 2.5 3.0
phi_pi

0

1

2

0.0 0.1 0.2 0.3
eta_B

0.0

2.5

5.0

7.5

0.96 0.97 0.98 0.99
rho_p

0

25

50

75

0.2 0.4 0.6
rho_i

0

2

4

6

0.80 0.85 0.90 0.95
rho_C

0

10

20

0.2 0.4 0.6 0.8
sig_p

0

2

4

6

0.3 0.4 0.5 0.6 0.7
sig_i

0.0

2.5

5.0

7.5

0.2 0.3 0.4
sig_C

0

5

10

15
Accepted
Proposal

Figure 3: Distribution of proposed and accepted draws from the multi-proposal
Metropolis-Hastings algorithm 10



Multi-proposal Metropolis-Hastings + Deep Learning

Steps:

1. Find posterior mode using a solver
2. Sample from the posterior using the multi-proposal Metropolis-Hastings

• Store candidates xi and posterior density π(xi), i = 1, 2, ...,N
• Drop 20% of candidates with low posterior density

• Some candidates have a very low likelihood
• Leaving them out compresses the range of values and eases training
• Wouldn’t matter for the final posterior distribution

3. Shuffle and split into training and validation samples
4. Train a deep neural network to approximate log π̂(x) = ΨDNN (x)

• Same configuration as before...
5. Sample from posterior using Metropolis-Hastings and ΨDNN (x)

• Very fast sampling at a rate of 10 000 it/second

11



Approximate Posterior ΨDNN (x)

0.70 0.72 0.74 0.76 0.78
theta

740

720

0.05 0.10 0.15 0.20 0.25
iota

710.0

707.5

705.0

702.5

0.30 0.35 0.40 0.45
phi_i

720

710

1.9 2.0 2.1 2.2 2.3
phi_pi

712.5

710.0

707.5

705.0

0.10 0.15 0.20
eta_B

707.5

705.0

702.5

700.0

0.970 0.975 0.980
rho_p

710.0

707.5

705.0

702.5

0.40 0.45 0.50
rho_i

710.0

707.5

705.0

702.5

0.86 0.88 0.90
rho_C

710.0

707.5

705.0

702.5

0.3 0.4
sig_p

760

740

720

0.45 0.50
sig_i

710.0

707.5

705.0

702.5

0.22 0.24 0.26 0.28
sig_C

720

715

710

705

Neural Network
Ground Truth

Figure 4: True and approximate log posterior for different parameters
12



Comparing posterior distributions

0.6 0.7 0.8
theta

0

5

10

15

0.0 0.2 0.4
iota

0.0

2.5

5.0

7.5

0.2 0.4 0.6
phi_i

0

2

4

6

1.5 2.0 2.5 3.0
phi_pi

0

1

2

3

0.1 0.2 0.3
eta_B

0.0

2.5

5.0

7.5

0.96 0.97 0.98 0.99
rho_p

0

25

50

75

0.2 0.4 0.6
rho_i

0.0

2.5

5.0

7.5

0.80 0.85 0.90 0.95
rho_C

0

10

20

0.2 0.4 0.6 0.8
sig_p

0

2

4

6

0.4 0.5 0.6 0.7
sig_i

0

5

10

0.2 0.3 0.4
sig_C

0

5

10

15 Ground Truth
Approximate Posterior

Figure 5: True and approximate posterior distributions for different parameters
13



More speed! 🏎️

• Generating training data 50 000 samples:
• On a laptop: ~1h 45min
• On a 64 core server CPU: ~29min

• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Estimate a simple HANK in 40min (or 2h on a laptop)!

• Almost identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.33%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~1.5h

14



More speed! 🏎️

• Generating training data 50 000 samples:
• On a laptop: ~1h 45min
• On a 64 core server CPU: ~29min

• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Estimate a simple HANK in 40min (or 2h on a laptop)!

• Almost identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.33%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~1.5h

14



More speed! 🏎️

• Generating training data 50 000 samples:
• On a laptop: ~1h 45min
• On a 64 core server CPU: ~29min

• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Estimate a simple HANK in 40min (or 2h on a laptop)!

• Almost identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.33%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~1.5h

14



More speed! 🏎️

• Generating training data 50 000 samples:
• On a laptop: ~1h 45min
• On a 64 core server CPU: ~29min

• Training the neural network: ~10min
• Deep Learning Metropolis-hastings for 200 000 samples: 20sec

Estimate a simple HANK in 40min (or 2h on a laptop)!

• Almost identical results:
• Probability of wrong accept, max{α̂− α, 0}: 0.33%
• Probability of wrong reject, max{α− α̂, 0}: 0.42%

• Estimation with solving for the deterministic steady state would take ~1.5h

14



Conclusion

By combining these innovations

• Approximate Posterior: Utilize a DNN to approximate the true posterior.
• Efficient Training Data: Employ a (parallel) Metropolis-Hastings algorithm to
generate training data and explore relevant regions of the parameter space.

• Waste Recycling: Use all generated draws.

We can speed up the estimation of complex macroeconomic models
significantly!

• Future directions:
• Applications: Quantitative HANK, forecasting
• Approximate household Jacobians?

15



Conclusion

By combining these innovations

• Approximate Posterior: Utilize a DNN to approximate the true posterior.
• Efficient Training Data: Employ a (parallel) Metropolis-Hastings algorithm to
generate training data and explore relevant regions of the parameter space.

• Waste Recycling: Use all generated draws.

We can speed up the estimation of complex macroeconomic models
significantly!

• Future directions:
• Applications: Quantitative HANK, forecasting
• Approximate household Jacobians?

15



Thank you!



References

Auclert, A., B. Bardóczy, M. Rognlie, and L. Straub. 2021. “Using the Sequence-Space
Jacobian to Solve and Estimate Heterogeneous-Agent Models.” Econometrica
89 (5): 2375–2408.

Calderhead, B. 2014. “A General Construction for Parallelizing Metropolis-Hastings
Algorithms.” Proceedings of the National Academy of Sciences 111 (49):
17408–17413.

Schwedes, T., and B. Calderhead. 2021. “Rao-Blackwellised Parallel MCMC.” In
Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, 3448–3456. PMLR.

16



Neural Network

• Single neuron i in layer l with width Hl and activation function σ:

x l
i = σ

∑
j

W l
ijx l−1

j + bl
i

 , 1 ≤ i ≤ Hl , 1 ≤ j ≤ Hl−1

• Single layer:

xl = σ
(
Al(xl−1)

)
, Al

(
xl−1

)
= Wlxl−1 + bl

• The entire network with L hidden layers:

ψ(x) =
(
AL+1 ◦ σ ◦ AL ◦ σ ◦ AL−1 ◦ ... ◦ σ ◦ A1) (x)

• Weights and biases of the network:

θ = {Wl , bl}L+1
l=1

17



Training a Neural Network

• Suppose we want to approximate f : x 7→ y using our neural network ψ(x; θ)
• We have a dataset of pairwise samples S = {(xi , yi) : 1 ≤ i ≤ N}
• Training is adjusting θ so that ψ(x, θ) starts approximating f:

θ∗ = argmin
θ

L(θ), where L(θ) = 1
N

N∑
i=1

(yi − ψ(x; θ))

• Usually done using (some variation of) gradient descent algorithm:

θk+1 = θk − η
∂L
∂θ

(θk)

• Where η is the learning rate
• The gradients are efficiently calculated using the backpropagation algorithm

18


	References

